Text Generation
Transformers
Safetensors
llama
text-generation-inference
Inference Endpoints
File size: 22,590 Bytes
f747383
 
 
 
 
 
 
 
484954e
 
 
238e48d
f747383
 
 
4159c04
97652e6
f747383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6666131
238e48d
 
 
 
 
 
 
f747383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdb949
 
 
f747383
 
 
 
 
2bdb949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f747383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4159c04
 
 
 
 
 
 
 
 
 
f747383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4159c04
074b5e7
f747383
 
 
 
 
 
 
 
 
484954e
 
 
 
 
4159c04
 
b6c73ac
 
 
074b5e7
 
 
 
 
 
 
85ef05e
4159c04
f747383
b6c73ac
f747383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cb136
f747383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad497c
 
 
f747383
 
 
 
56cb136
f747383
 
 
 
 
 
 
 
 
 
 
 
56cb136
 
 
 
 
f747383
56cb136
 
 
 
3c00831
 
6fb58c2
 
3c00831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11ff4bc
3c00831
 
 
0aaf3bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from __future__ import annotations

import json
import os
import warnings
from pathlib import Path
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union

import sentencepiece as spm
import numpy as np
import torch
from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE


REPO_ID = "openGPT-X/Teuken-7B-instruct-research-v0.4"

class HFGPTXTokenizer(PreTrainedTokenizer):
    """
    A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer.
    It is specifically designed to work with SentencePiece models and integrates
    with Hugging Face's tokenizer utilities.
    """
    
    model_file_glob = "*tokenizer.json"
    vocab_files_names = {"tokenizer_file": "tokenizer.json"}
    decode_kwargs: List[str] = []

    def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False):
        """
        Encode a given text using the tokenizer.
        
        Args:
            text (str): The text to encode.
            return_tokens (bool): If True, returns token strings instead of token IDs.
            is_continuation (bool): If True, uses a continuation tokenizer (if available).
        Returns:
            List[int] or List[str]: Encoded text as a list of token IDs or token strings.
        """
        assert self.tok is not None, "No tokenizer is currently loaded"

        # Variant with additional sp processor:
        tokenizer = self.continuation_tokenizer if is_continuation else self.tok

        if return_tokens:
            return tokenizer.encode_as_pieces(text)
        else:
            return tokenizer.encode(text)
    
    def create_list_of_special_tokens(self) -> List[str]:
        """
        Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
        and 256 additional placeholder tokens.
        Returns:
            List[str]: List of special tokens.
        """
        return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [
            f"<placeholder_tok_{i}>" for i in range(256)
        ]
    
    def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
        if not os.path.isfile(config_path):
            config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
            if not config_path:
                config_path = self._download_config_from_hub(repo_id=repo_id)

        return config_path

    
    def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None):
        """
        Load the tokenizer model from a file or download it from a repository.

        Args:
            model_file_or_name (str): Path to the model file or the model name.
            repo_id (str, optional): Repository ID from which to download the model file.

        Returns:
            spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance.

        Raises:
            ValueError: If repo_id is not provided when model_file_or_name is not a file.
            OSError: If the model file cannot be loaded or downloaded.
        """
        if not os.path.isfile(model_file_or_name):
            model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
            if not model_file_or_name:
                model_file_or_name = self._download_model_from_hub(repo_id=repo_id)

        try:
            return spm.SentencePieceProcessor(model_file=model_file_or_name)
        except Exception as e:
            raise OSError(f"Failed to load tokenizer model: {str(e)}")

    def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
        try:
            # List all files in the repo
            repo_files = list_repo_files(repo_id)

            # Find the tokenizer model file
            tokenizer_files = [f for f in repo_files if f.endswith('.model')]
            if not tokenizer_files:
                raise FileNotFoundError(f"No .model file found in repository {repo_id}")

            # Use the first .model file found
            model_file = tokenizer_files[0]
            print(f"Found tokenizer model file: {model_file}")

            # Download the file
            model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
            print(f"Downloaded tokenizer model to: {model_file_or_name}")
        except Exception as e:
            raise OSError(f"Failed to download tokenizer model: {str(e)}")

        return model_file_or_name

    def _download_config_from_hub(self, repo_id: str):
        if repo_id is None:
            raise ValueError("repo_id must be provided if config_path is not a local file")

        try:
            # List all files in the repo
            repo_files = list_repo_files(repo_id)

            # Find the tokenizer config file
            tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
            if not tokenizer_files:
                raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")

            # Use the first tokenizer_config.json file found
            tokenizer_config_file = tokenizer_files[0]
            print(f"Found tokenizer config file: {tokenizer_config_file}")

            # Download the file
            tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
            print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
            return tokenizer_config_file_or_name
        except Exception as e:
            raise OSError(f"Failed to download tokenizer model: {str(e)}")    
    def __init__(
        self,
        model_path: Optional[str] = None,
        config_path: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """
        Initialize the tokenizer.
        Args:
            model_path (Optional[str]): Path to the tokenizer model file.
            config_path (Optional[str]): Path to the tokenizer configuration file.
            **kwargs: Additional keyword arguments passed to the superclass.
        This method also ensures backward compatibility by setting
        `clean_up_tokenization_spaces` to False by default.
        """
        # Prevent cleanup of tokenization spaces to maintain backward compatibility
        self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False)
        self.vocab = None
        cp_path = kwargs.get("name_or_path", ".")
        if model_path is None:
            model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"])
        self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID)

        super().__init__(**kwargs)

        # Specify special tokens which we know the value of.
        # EOD from `tok` is used as what is called EOS in HuggingFace.
        # Since there is no corresponding mapping for EOS from `tok` in
        # HuggingFace, it is treated as an additional special token.
        # Same for all other special tokens.
        
        
        self.unk_token = "<unk>"
        self.eos_token = "</s>"
        self.bos_token = "<s>"
        self.pad_token = "<pad>"
        self.eod_token = "<eod>"
        
        self.additional_special_tokens = self.create_list_of_special_tokens()
    
        if config_path is None:
            config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE)

        if os.path.isfile(config_path):
            self.tokenizer_config = self.load_json(Path(config_path))
        else: # Load from repo
            self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID)))

    @property
    def vocab_size(self) -> int:
        """
        Get the size of the tokenizer vocabulary.
        Returns:
            int: The size of the vocabulary.
        """
        return self.tok.GetPieceSize()

    def get_vocab(self) -> Dict[str, int]:
        """
        Get the vocabulary as a dictionary mapping token strings to their IDs.
        Returns:
            Dict[str, int]: Vocabulary mapping.
        """
        if self.vocab is None:
            self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)}
        return self.vocab

    def _tokenize(self, text: str, **kwargs) -> List[int]:
        """
        Tokenize the input text.
        Args:
            text (str): Text to tokenize.
            **kwargs: Additional keyword arguments.
        Returns:
            List[int]: List of token IDs.
        """
        return_tokens = kwargs.pop("return_tokens", True)
        return self._encode(text, return_tokens=return_tokens, **kwargs)

    def _convert_token_to_id(self, token: str) -> int:
        """
        Convert a token string to its corresponding ID.
        Args:
            token (str): The token to convert.
        Returns:
            int: The token's ID.
        Raises:
            ValueError: If the token is unknown and cannot be encoded to a single ID.
        """
        return self.tok.PieceToId(token)


    def decode(
        self,
        token_ids: Union[List[int], List[List[int]]],
        num_threads: Optional[int] = None,
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = False,
    ) -> str:
        """
        Decode a list of token IDs into a string.
        Args:
            token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
            num_threads (Optional[int]): Number of threads to use for decoding.
        Returns:
            str: Decoded string.
        """
        if isinstance(token_ids, torch.Tensor):  # For PyTorch tensors
            token_ids = token_ids.tolist()
        elif isinstance(token_ids, np.ndarray):  # For NumPy arrays
            token_ids = token_ids.tolist()
        
        output = self.tok.decode(input=token_ids, num_threads=num_threads)
        if skip_special_tokens:
            for substring in self.additional_special_tokens:
                output = output.replace(substring, "")
        
        if clean_up_tokenization_spaces:
            warnings.warn(
                "when cleaning up tokenization spaces, this will not behave "
                "like the original `GPTXTokenizer`., Please supply "
                "`clean_up_tokenization_spaces=False` for decoding."
            )
            output = self.clean_up_tokenization(output)
        
        return output

    
    def _convert_id_to_token(self, index: int) -> str:
        """
        Convert a token ID to its corresponding token string.
        Args:
            index (int): Token ID.
        Returns:
            str: Corresponding token string.
        """
        return self.tok.IdToPiece(index)

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """
        Convert a list of tokens into a single string.
        Args:
            tokens (List[str]): List of token strings.
        Returns:
            str: Concatenated string of tokens.
        """
        return self.tok.DecodePieces(tokens)

    def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
        """
        Internal method to decode token IDs with additional arguments.
        Args:
            token_ids (List[int]): List of token IDs.
            **kwargs: Additional arguments to pass to the decode method.
        Returns:
            str: Decoded string.
        This method also issues a warning if unsupported arguments are provided.
        """
        passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
        if len(passed_kwargs) != len(kwargs):
            warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.")
        text = self.decode(token_ids, **passed_kwargs)
        return text
    
    def save_tokenizer(self, save_dir: str) -> None:
        if not os.path.isdir(save_dir):
            print(f"Vocabulary path ({save_dir}) should be a directory")
            return
        out_vocab_file = os.path.join(save_dir, "tokenizer.model")

        # if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
        #     copyfile(self.vocab_file, out_vocab_file)
        # elif not os.path.isfile(self.vocab_file):
        with open(out_vocab_file, "wb") as f:
            content_spiece_model = self.tok.serialized_model_proto()
            f.write(content_spiece_model)

        return (out_vocab_file,)
        
    def _decode(
        self,
        token_ids: List[int],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        spaces_between_special_tokens: bool = True,
        **kwargs: Any,
    ) -> str:
        text = self._tok_decode(
            token_ids,
            skip_special_tokens=skip_special_tokens,
            spaces_between_special_tokens=spaces_between_special_tokens,
            **kwargs,
        )

        clean_up_tokenization_spaces = (
            clean_up_tokenization_spaces
            if clean_up_tokenization_spaces is not None
            else self.clean_up_tokenization_spaces
        )
        if clean_up_tokenization_spaces:
            warnings.warn(
                "when cleaning up tokenization spaces, this will not behave "
                "like the original `GPTXTokenizer`., Please supply "
                "`clean_up_tokenization_spaces=False` for decoding."
            )
            clean_text = self.clean_up_tokenization(text)
            return clean_text
        else:
            return text
        
    def save_vocabulary(
        self,
        save_directory: str,
        filename_prefix: Optional[str] = None,
    ) -> Tuple[str]:
        filename_prefix = filename_prefix + "-" if filename_prefix else ""
        save_directory = Path(save_directory)

        self._save_tokenizer_config(save_directory, filename_prefix)
        tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix)

        return (tokenizer_file_path,)

    def _save_tokenizer_config(
        self,
        save_directory: Path,
        filename_prefix: str,
    ) -> str:
        self.save_tokenizer_config(save_directory)
        old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE
        assert old_tokenizer_config_path.is_file(), "tokenizer config path changed"
        new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name)
        old_tokenizer_config_path.replace(new_tokenizer_config_path)
        return str(new_tokenizer_config_path)

    def _find_tokenizer_files(self, save_directory: Path) -> List[Path]:
        files = list(Path(save_directory).glob(self.model_file_glob))
        return files

    def _get_tokenizer_file(self, files: List[Path]):
        assert files, "no saved tokenizer file found"
        assert len(files) <= 1, "cannot handle multiple saved tokenizer files"
        return files[0]
    
    def _save_tokenizer(
        self,
        save_directory: Path,
        filename_prefix: str,
    ) -> str:
        self.save_tokenizer(str(save_directory))
        tokenizer_files = self._find_tokenizer_files(save_directory)
        old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files)
        assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file"
        new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"])
        old_tokenizer_file_path.replace(new_tokenizer_file_path)
        return str(new_tokenizer_file_path)
    
    def save_tokenizer_config(self, save_dir: Union[str, Path]) -> None:
        save_dir = Path(save_dir)

        # convert Path to str
        for k in self.tokenizer_config:
            if isinstance(self.tokenizer_config[k], Path):
                self.tokenizer_config[k] = str(self.tokenizer_config[k])

        info_file = save_dir / "tokenizer_config.json"
        with info_file.open("w") as f:
            json.dump(self.tokenizer_config, f, indent=4)
            
    def load_json(self, path: Path) -> dict:
        with path.open("r") as f:
            return json.load(f)
        
class SPTokenizer(HFGPTXTokenizer):
    model_file_glob = "*tokenizer.model"
    vocab_files_names = {"tokenizer_file": "tokenizer.model"}
    decode_kwargs = ["num_threads"]
    # `is_continuation` does not work without this, but it doesn't
    # implement all APIs of `PreTrainedTokenizer`.
    def encode(self, text: str, **kwargs) -> List[int]:
        return_tokens = kwargs.pop('return_tokens', False)
        is_continuation = kwargs.pop('is_continuation', False)
        return self._encode(
            text,
            return_tokens=return_tokens,
            is_continuation=is_continuation,
        )
        
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.eos_token = "</s>"
        self.eos_token_id = 2
        self.system_messages_by_lang = {  # translations by deepl / google translate
                "BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.",  # noqa
                "CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.",  # noqa
                "DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.",  # noqa
                "DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.",  # noqa
                "EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.",  # noqa
                "EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.",  # noqa
                "ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.",  # noqa
                "ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.",  # noqa
                "FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.",  # noqa
                "FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.",  # noqa
                "GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.",  # noqa
                "HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.",  # noqa
                "HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.",  # noqa
                "IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.",  # noqa
                "LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.",  # noqa
                "LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.",  # noqa
                "MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.",  # noqa
                "NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.",  # noqa
                "PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.",  # noqa
                "PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.",  # noqa
                "RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.",  # noqa
                "SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.",  # noqa
                "SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.",  # noqa
                "SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.",  # noqa
        }
        chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n"
        self.chat_template = {
            lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
            for lang, sys_msg in self.system_messages_by_lang.items()
        }
        self.chat_template['default'] = f"System: {self.system_messages_by_lang['EN']}" + "{{- '\\n'}}\n" + chat_template