Text Generation
Transformers
Safetensors
llama
text-generation-inference
Inference Endpoints
mfromm commited on
Commit
484954e
·
verified ·
1 Parent(s): b6c73ac

Update gptx_tokenizer.py

Browse files
Files changed (1) hide show
  1. gptx_tokenizer.py +920 -0
gptx_tokenizer.py CHANGED
@@ -6,6 +6,254 @@ import warnings
6
  from pathlib import Path
7
  from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  import sentencepiece as spm
10
  from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
11
  from transformers.tokenization_utils import PreTrainedTokenizer
@@ -243,6 +491,678 @@ class HFGPTXTokenizer(PreTrainedTokenizer):
243
  Returns:
244
  str: Decoded string.
245
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
  output = self.tok.decode(input=token_ids, num_threads=num_threads)
247
  if skip_special_tokens:
248
  for substring in self.additional_special_tokens:
 
6
  from pathlib import Path
7
  from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
8
 
9
+ import sentencepiece as spm
10
+ import numpy as np
11
+ import torch
12
+
13
+ from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
14
+ from transformers.tokenization_utils import PreTrainedTokenizer
15
+ from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
16
+
17
+
18
+ REPO_ID = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
19
+
20
+ class HFGPTXTokenizer(PreTrainedTokenizer):
21
+ """
22
+ A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer.
23
+ It is specifically designed to work with SentencePiece models and integrates
24
+ with Hugging Face's tokenizer utilities.
25
+ """
26
+
27
+ model_file_glob = "*tokenizer.json"
28
+ vocab_files_names = {"tokenizer_file": "tokenizer.json"}
29
+ decode_kwargs: List[str] = []
30
+
31
+ def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False):
32
+ """
33
+ Encode a given text using the tokenizer.
34
+
35
+ Args:
36
+ text (str): The text to encode.
37
+ return_tokens (bool): If True, returns token strings instead of token IDs.
38
+ is_continuation (bool): If True, uses a continuation tokenizer (if available).
39
+ Returns:
40
+ List[int] or List[str]: Encoded text as a list of token IDs or token strings.
41
+ """
42
+ assert self.tok is not None, "No tokenizer is currently loaded"
43
+
44
+ # Variant with additional sp processor:
45
+ tokenizer = self.continuation_tokenizer if is_continuation else self.tok
46
+
47
+ if return_tokens:
48
+ return tokenizer.encode_as_pieces(text)
49
+ else:
50
+ return tokenizer.encode(text)
51
+
52
+ def create_list_of_special_tokens(self) -> List[str]:
53
+ """
54
+ Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
55
+ and 256 additional placeholder tokens.
56
+ Returns:
57
+ List[str]: List of special tokens.
58
+ """
59
+ return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [
60
+ f"<placeholder_tok_{i}>" for i in range(256)
61
+ ]
62
+
63
+ def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
64
+ if not os.path.isfile(config_path):
65
+ config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
66
+ if not config_path:
67
+ config_path = self._download_config_from_hub(repo_id=repo_id)
68
+
69
+ return config_path
70
+
71
+
72
+ def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None):
73
+ """
74
+ Load the tokenizer model from a file or download it from a repository.
75
+
76
+ Args:
77
+ model_file_or_name (str): Path to the model file or the model name.
78
+ repo_id (str, optional): Repository ID from which to download the model file.
79
+
80
+ Returns:
81
+ spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance.
82
+
83
+ Raises:
84
+ ValueError: If repo_id is not provided when model_file_or_name is not a file.
85
+ OSError: If the model file cannot be loaded or downloaded.
86
+ """
87
+ if not os.path.isfile(model_file_or_name):
88
+ model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
89
+ if not model_file_or_name:
90
+ model_file_or_name = self._download_model_from_hub(repo_id=repo_id)
91
+
92
+ try:
93
+ return spm.SentencePieceProcessor(model_file=model_file_or_name)
94
+ except Exception as e:
95
+ raise OSError(f"Failed to load tokenizer model: {str(e)}")
96
+
97
+ def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
98
+ try:
99
+ # List all files in the repo
100
+ repo_files = list_repo_files(repo_id)
101
+
102
+ # Find the tokenizer model file
103
+ tokenizer_files = [f for f in repo_files if f.endswith('.model')]
104
+ if not tokenizer_files:
105
+ raise FileNotFoundError(f"No .model file found in repository {repo_id}")
106
+
107
+ # Use the first .model file found
108
+ model_file = tokenizer_files[0]
109
+ print(f"Found tokenizer model file: {model_file}")
110
+
111
+ # Download the file
112
+ model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
113
+ print(f"Downloaded tokenizer model to: {model_file_or_name}")
114
+ except Exception as e:
115
+ raise OSError(f"Failed to download tokenizer model: {str(e)}")
116
+
117
+ return model_file_or_name
118
+
119
+ def _download_config_from_hub(self, repo_id: str):
120
+ if repo_id is None:
121
+ raise ValueError("repo_id must be provided if config_path is not a local file")
122
+
123
+ try:
124
+ # List all files in the repo
125
+ repo_files = list_repo_files(repo_id)
126
+
127
+ # Find the tokenizer config file
128
+ tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
129
+ if not tokenizer_files:
130
+ raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")
131
+
132
+ # Use the first tokenizer_config.json file found
133
+ tokenizer_config_file = tokenizer_files[0]
134
+ print(f"Found tokenizer config file: {tokenizer_config_file}")
135
+
136
+ # Download the file
137
+ tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
138
+ print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
139
+ return tokenizer_config_file_or_name
140
+ except Exception as e:
141
+ raise OSError(f"Failed to download tokenizer model: {str(e)}")
142
+ def __init__(
143
+ self,
144
+ model_path: Optional[str] = None,
145
+ config_path: Optional[str] = None,
146
+ **kwargs: Any,
147
+ ) -> None:
148
+ """
149
+ Initialize the tokenizer.
150
+ Args:
151
+ model_path (Optional[str]): Path to the tokenizer model file.
152
+ config_path (Optional[str]): Path to the tokenizer configuration file.
153
+ **kwargs: Additional keyword arguments passed to the superclass.
154
+ This method also ensures backward compatibility by setting
155
+ `clean_up_tokenization_spaces` to False by default.
156
+ """
157
+ # Prevent cleanup of tokenization spaces to maintain backward compatibility
158
+ self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False)
159
+ self.vocab = None
160
+ cp_path = kwargs.get("name_or_path", ".")
161
+ if model_path is None:
162
+ model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"])
163
+ self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID)
164
+
165
+ super().__init__(**kwargs)
166
+
167
+ # Specify special tokens which we know the value of.
168
+ # EOD from `tok` is used as what is called EOS in HuggingFace.
169
+ # Since there is no corresponding mapping for EOS from `tok` in
170
+ # HuggingFace, it is treated as an additional special token.
171
+ # Same for all other special tokens.
172
+
173
+
174
+ self.unk_token = "<unk>"
175
+ self.eos_token = "</s>"
176
+ self.bos_token = "<s>"
177
+ self.pad_token = "<pad>"
178
+ self.eod_token = "<eod>"
179
+
180
+ self.additional_special_tokens = self.create_list_of_special_tokens()
181
+
182
+ if config_path is None:
183
+ config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE)
184
+
185
+ if os.path.isfile(config_path):
186
+ self.tokenizer_config = self.load_json(Path(config_path))
187
+ else: # Load from repo
188
+ self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID)))
189
+
190
+ @property
191
+ def vocab_size(self) -> int:
192
+ """
193
+ Get the size of the tokenizer vocabulary.
194
+ Returns:
195
+ int: The size of the vocabulary.
196
+ """
197
+ return self.tok.GetPieceSize()
198
+
199
+ def get_vocab(self) -> Dict[str, int]:
200
+ """
201
+ Get the vocabulary as a dictionary mapping token strings to their IDs.
202
+ Returns:
203
+ Dict[str, int]: Vocabulary mapping.
204
+ """
205
+ if self.vocab is None:
206
+ self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)}
207
+ return self.vocab
208
+
209
+ def _tokenize(self, text: str, **kwargs) -> List[int]:
210
+ """
211
+ Tokenize the input text.
212
+ Args:
213
+ text (str): Text to tokenize.
214
+ **kwargs: Additional keyword arguments.
215
+ Returns:
216
+ List[int]: List of token IDs.
217
+ """
218
+ return_tokens = kwargs.pop("return_tokens", True)
219
+ return self._encode(text, return_tokens=return_tokens, **kwargs)
220
+
221
+ def _convert_token_to_id(self, token: str) -> int:
222
+ """
223
+ Convert a token string to its corresponding ID.
224
+ Args:
225
+ token (str): The token to convert.
226
+ Returns:
227
+ int: The token's ID.
228
+ Raises:
229
+ ValueError: If the token is unknown and cannot be encoded to a single ID.
230
+ """
231
+ return self.tok.PieceToId(token)
232
+
233
+
234
+ def decode(
235
+ self,
236
+ token_ids: Union[List[int], List[List[int]]],
237
+ num_threads: Optional[int] = None,
238
+ skip_special_tokens: bool = False,
239
+ clean_up_tokenization_spaces: bool = False,
240
+ ) -> str:
241
+ """
242
+ Decode a list of token IDs into a string.
243
+ Args:
244
+ token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
245
+ num_threads (Optional[int]): Number of threads to use for decoding.
246
+ Returns:
247
+ str: Decoded string.
248
+ """
249
+ from __future__ import annotations
250
+
251
+ import json
252
+ import os
253
+ import warnings
254
+ from pathlib import Path
255
+ from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
256
+
257
  import sentencepiece as spm
258
  from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
259
  from transformers.tokenization_utils import PreTrainedTokenizer
 
491
  Returns:
492
  str: Decoded string.
493
  """
494
+ from __future__ import annotations
495
+
496
+ import json
497
+ import os
498
+ import warnings
499
+ from pathlib import Path
500
+ from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
501
+
502
+ import sentencepiece as spm
503
+ from huggingface_hub import hf_hub_download, list_repo_files, try_to_load_from_cache
504
+ from transformers.tokenization_utils import PreTrainedTokenizer
505
+ from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
506
+
507
+
508
+ REPO_ID = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
509
+
510
+ class HFGPTXTokenizer(PreTrainedTokenizer):
511
+ """
512
+ A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer.
513
+ It is specifically designed to work with SentencePiece models and integrates
514
+ with Hugging Face's tokenizer utilities.
515
+ """
516
+
517
+ model_file_glob = "*tokenizer.json"
518
+ vocab_files_names = {"tokenizer_file": "tokenizer.json"}
519
+ decode_kwargs: List[str] = []
520
+
521
+ def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False):
522
+ """
523
+ Encode a given text using the tokenizer.
524
+
525
+ Args:
526
+ text (str): The text to encode.
527
+ return_tokens (bool): If True, returns token strings instead of token IDs.
528
+ is_continuation (bool): If True, uses a continuation tokenizer (if available).
529
+ Returns:
530
+ List[int] or List[str]: Encoded text as a list of token IDs or token strings.
531
+ """
532
+ assert self.tok is not None, "No tokenizer is currently loaded"
533
+
534
+ # Variant with additional sp processor:
535
+ tokenizer = self.continuation_tokenizer if is_continuation else self.tok
536
+
537
+ if return_tokens:
538
+ return tokenizer.encode_as_pieces(text)
539
+ else:
540
+ return tokenizer.encode(text)
541
+
542
+ def create_list_of_special_tokens(self) -> List[str]:
543
+ """
544
+ Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens,
545
+ and 256 additional placeholder tokens.
546
+ Returns:
547
+ List[str]: List of special tokens.
548
+ """
549
+ return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [
550
+ f"<placeholder_tok_{i}>" for i in range(256)
551
+ ]
552
+
553
+ def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Optional[Path]:
554
+ if not os.path.isfile(config_path):
555
+ config_path = try_to_load_from_cache(repo_id=repo_id, filename=Path(config_path).name)
556
+ if not config_path:
557
+ config_path = self._download_config_from_hub(repo_id=repo_id)
558
+
559
+ return config_path
560
+
561
+
562
+ def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None):
563
+ """
564
+ Load the tokenizer model from a file or download it from a repository.
565
+
566
+ Args:
567
+ model_file_or_name (str): Path to the model file or the model name.
568
+ repo_id (str, optional): Repository ID from which to download the model file.
569
+
570
+ Returns:
571
+ spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance.
572
+
573
+ Raises:
574
+ ValueError: If repo_id is not provided when model_file_or_name is not a file.
575
+ OSError: If the model file cannot be loaded or downloaded.
576
+ """
577
+ if not os.path.isfile(model_file_or_name):
578
+ model_file_or_name = try_to_load_from_cache(repo_id=repo_id, filename=Path(model_file_or_name).name)
579
+ if not model_file_or_name:
580
+ model_file_or_name = self._download_model_from_hub(repo_id=repo_id)
581
+
582
+ try:
583
+ return spm.SentencePieceProcessor(model_file=model_file_or_name)
584
+ except Exception as e:
585
+ raise OSError(f"Failed to load tokenizer model: {str(e)}")
586
+
587
+ def _download_model_from_hub(self, repo_id: str) -> Optional[str]:
588
+ try:
589
+ # List all files in the repo
590
+ repo_files = list_repo_files(repo_id)
591
+
592
+ # Find the tokenizer model file
593
+ tokenizer_files = [f for f in repo_files if f.endswith('.model')]
594
+ if not tokenizer_files:
595
+ raise FileNotFoundError(f"No .model file found in repository {repo_id}")
596
+
597
+ # Use the first .model file found
598
+ model_file = tokenizer_files[0]
599
+ print(f"Found tokenizer model file: {model_file}")
600
+
601
+ # Download the file
602
+ model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file)
603
+ print(f"Downloaded tokenizer model to: {model_file_or_name}")
604
+ except Exception as e:
605
+ raise OSError(f"Failed to download tokenizer model: {str(e)}")
606
+
607
+ return model_file_or_name
608
+
609
+ def _download_config_from_hub(self, repo_id: str):
610
+ if repo_id is None:
611
+ raise ValueError("repo_id must be provided if config_path is not a local file")
612
+
613
+ try:
614
+ # List all files in the repo
615
+ repo_files = list_repo_files(repo_id)
616
+
617
+ # Find the tokenizer config file
618
+ tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')]
619
+ if not tokenizer_files:
620
+ raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}")
621
+
622
+ # Use the first tokenizer_config.json file found
623
+ tokenizer_config_file = tokenizer_files[0]
624
+ print(f"Found tokenizer config file: {tokenizer_config_file}")
625
+
626
+ # Download the file
627
+ tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file)
628
+ print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}")
629
+ return tokenizer_config_file_or_name
630
+ except Exception as e:
631
+ raise OSError(f"Failed to download tokenizer model: {str(e)}")
632
+ def __init__(
633
+ self,
634
+ model_path: Optional[str] = None,
635
+ config_path: Optional[str] = None,
636
+ **kwargs: Any,
637
+ ) -> None:
638
+ """
639
+ Initialize the tokenizer.
640
+ Args:
641
+ model_path (Optional[str]): Path to the tokenizer model file.
642
+ config_path (Optional[str]): Path to the tokenizer configuration file.
643
+ **kwargs: Additional keyword arguments passed to the superclass.
644
+ This method also ensures backward compatibility by setting
645
+ `clean_up_tokenization_spaces` to False by default.
646
+ """
647
+ # Prevent cleanup of tokenization spaces to maintain backward compatibility
648
+ self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False)
649
+ self.vocab = None
650
+ cp_path = kwargs.get("name_or_path", ".")
651
+ if model_path is None:
652
+ model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"])
653
+ self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID)
654
+
655
+ super().__init__(**kwargs)
656
+
657
+ # Specify special tokens which we know the value of.
658
+ # EOD from `tok` is used as what is called EOS in HuggingFace.
659
+ # Since there is no corresponding mapping for EOS from `tok` in
660
+ # HuggingFace, it is treated as an additional special token.
661
+ # Same for all other special tokens.
662
+
663
+
664
+ self.unk_token = "<unk>"
665
+ self.eos_token = "</s>"
666
+ self.bos_token = "<s>"
667
+ self.pad_token = "<pad>"
668
+ self.eod_token = "<eod>"
669
+
670
+ self.additional_special_tokens = self.create_list_of_special_tokens()
671
+
672
+ if config_path is None:
673
+ config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE)
674
+
675
+ if os.path.isfile(config_path):
676
+ self.tokenizer_config = self.load_json(Path(config_path))
677
+ else: # Load from repo
678
+ self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID)))
679
+
680
+ @property
681
+ def vocab_size(self) -> int:
682
+ """
683
+ Get the size of the tokenizer vocabulary.
684
+ Returns:
685
+ int: The size of the vocabulary.
686
+ """
687
+ return self.tok.GetPieceSize()
688
+
689
+ def get_vocab(self) -> Dict[str, int]:
690
+ """
691
+ Get the vocabulary as a dictionary mapping token strings to their IDs.
692
+ Returns:
693
+ Dict[str, int]: Vocabulary mapping.
694
+ """
695
+ if self.vocab is None:
696
+ self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)}
697
+ return self.vocab
698
+
699
+ def _tokenize(self, text: str, **kwargs) -> List[int]:
700
+ """
701
+ Tokenize the input text.
702
+ Args:
703
+ text (str): Text to tokenize.
704
+ **kwargs: Additional keyword arguments.
705
+ Returns:
706
+ List[int]: List of token IDs.
707
+ """
708
+ return_tokens = kwargs.pop("return_tokens", True)
709
+ return self._encode(text, return_tokens=return_tokens, **kwargs)
710
+
711
+ def _convert_token_to_id(self, token: str) -> int:
712
+ """
713
+ Convert a token string to its corresponding ID.
714
+ Args:
715
+ token (str): The token to convert.
716
+ Returns:
717
+ int: The token's ID.
718
+ Raises:
719
+ ValueError: If the token is unknown and cannot be encoded to a single ID.
720
+ """
721
+ return self.tok.PieceToId(token)
722
+
723
+
724
+ def decode(
725
+ self,
726
+ token_ids: Union[List[int], List[List[int]]],
727
+ num_threads: Optional[int] = None,
728
+ skip_special_tokens: bool = False,
729
+ clean_up_tokenization_spaces: bool = False,
730
+ ) -> str:
731
+ """
732
+ Decode a list of token IDs into a string.
733
+ Args:
734
+ token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs.
735
+ num_threads (Optional[int]): Number of threads to use for decoding.
736
+ Returns:
737
+ str: Decoded string.
738
+ """
739
+ if isinstance(token_ids, torch.Tensor): # For PyTorch tensors
740
+ token_ids = token_ids.tolist()
741
+ elif isinstance(token_ids, np.ndarray): # For NumPy arrays
742
+ token_ids = token_ids.tolist()
743
+
744
+
745
+ output = self.tok.decode(input=token_ids, num_threads=num_threads)
746
+ if skip_special_tokens:
747
+ for substring in self.additional_special_tokens:
748
+ output = output.replace(substring, "")
749
+
750
+ if clean_up_tokenization_spaces:
751
+ warnings.warn(
752
+ "when cleaning up tokenization spaces, this will not behave "
753
+ "like the original `GPTXTokenizer`., Please supply "
754
+ "`clean_up_tokenization_spaces=False` for decoding."
755
+ )
756
+ output = self.clean_up_tokenization(output)
757
+
758
+ return output
759
+
760
+
761
+ def _convert_id_to_token(self, index: int) -> str:
762
+ """
763
+ Convert a token ID to its corresponding token string.
764
+ Args:
765
+ index (int): Token ID.
766
+ Returns:
767
+ str: Corresponding token string.
768
+ """
769
+ return self.tok.IdToPiece(index)
770
+
771
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
772
+ """
773
+ Convert a list of tokens into a single string.
774
+ Args:
775
+ tokens (List[str]): List of token strings.
776
+ Returns:
777
+ str: Concatenated string of tokens.
778
+ """
779
+ return self.tok.DecodePieces(tokens)
780
+
781
+ def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
782
+ """
783
+ Internal method to decode token IDs with additional arguments.
784
+ Args:
785
+ token_ids (List[int]): List of token IDs.
786
+ **kwargs: Additional arguments to pass to the decode method.
787
+ Returns:
788
+ str: Decoded string.
789
+ This method also issues a warning if unsupported arguments are provided.
790
+ """
791
+ passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
792
+ if len(passed_kwargs) != len(kwargs):
793
+ warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.")
794
+ text = self.decode(token_ids, **passed_kwargs)
795
+ return text
796
+
797
+ def save_tokenizer(self, save_dir: str) -> None:
798
+ if not os.path.isdir(save_dir):
799
+ print(f"Vocabulary path ({save_dir}) should be a directory")
800
+ return
801
+ out_vocab_file = os.path.join(save_dir, "tokenizer.model")
802
+
803
+ # if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
804
+ # copyfile(self.vocab_file, out_vocab_file)
805
+ # elif not os.path.isfile(self.vocab_file):
806
+ with open(out_vocab_file, "wb") as f:
807
+ content_spiece_model = self.tok.serialized_model_proto()
808
+ f.write(content_spiece_model)
809
+
810
+ return (out_vocab_file,)
811
+
812
+ def _decode(
813
+ self,
814
+ token_ids: List[int],
815
+ skip_special_tokens: bool = False,
816
+ clean_up_tokenization_spaces: bool = None,
817
+ spaces_between_special_tokens: bool = True,
818
+ **kwargs: Any,
819
+ ) -> str:
820
+ text = self._tok_decode(
821
+ token_ids,
822
+ skip_special_tokens=skip_special_tokens,
823
+ spaces_between_special_tokens=spaces_between_special_tokens,
824
+ **kwargs,
825
+ )
826
+
827
+ clean_up_tokenization_spaces = (
828
+ clean_up_tokenization_spaces
829
+ if clean_up_tokenization_spaces is not None
830
+ else self.clean_up_tokenization_spaces
831
+ )
832
+ if clean_up_tokenization_spaces:
833
+ warnings.warn(
834
+ "when cleaning up tokenization spaces, this will not behave "
835
+ "like the original `GPTXTokenizer`., Please supply "
836
+ "`clean_up_tokenization_spaces=False` for decoding."
837
+ )
838
+ clean_text = self.clean_up_tokenization(text)
839
+ return clean_text
840
+ else:
841
+ return text
842
+
843
+ def save_vocabulary(
844
+ self,
845
+ save_directory: str,
846
+ filename_prefix: Optional[str] = None,
847
+ ) -> Tuple[str]:
848
+ filename_prefix = filename_prefix + "-" if filename_prefix else ""
849
+ save_directory = Path(save_directory)
850
+
851
+ self._save_tokenizer_config(save_directory, filename_prefix)
852
+ tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix)
853
+
854
+ return (tokenizer_file_path,)
855
+
856
+ def _save_tokenizer_config(
857
+ self,
858
+ save_directory: Path,
859
+ filename_prefix: str,
860
+ ) -> str:
861
+ self.save_tokenizer_config(save_directory)
862
+ old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE
863
+ assert old_tokenizer_config_path.is_file(), "tokenizer config path changed"
864
+ new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name)
865
+ old_tokenizer_config_path.replace(new_tokenizer_config_path)
866
+ return str(new_tokenizer_config_path)
867
+
868
+ def _find_tokenizer_files(self, save_directory: Path) -> List[Path]:
869
+ files = list(Path(save_directory).glob(self.model_file_glob))
870
+ return files
871
+
872
+ def _get_tokenizer_file(self, files: List[Path]):
873
+ assert files, "no saved tokenizer file found"
874
+ assert len(files) <= 1, "cannot handle multiple saved tokenizer files"
875
+ return files[0]
876
+
877
+ def _save_tokenizer(
878
+ self,
879
+ save_directory: Path,
880
+ filename_prefix: str,
881
+ ) -> str:
882
+ self.save_tokenizer(str(save_directory))
883
+ tokenizer_files = self._find_tokenizer_files(save_directory)
884
+ old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files)
885
+ assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file"
886
+ new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"])
887
+ old_tokenizer_file_path.replace(new_tokenizer_file_path)
888
+ return str(new_tokenizer_file_path)
889
+
890
+ def save_tokenizer_config(self, save_dir: Path) -> None:
891
+ # convert Path to str
892
+ for k in self.tokenizer_config:
893
+ if isinstance(self.tokenizer_config[k], Path):
894
+ self.tokenizer_config[k] = str(self.tokenizer_config[k])
895
+
896
+ info_file = save_dir / "tokenizer_config.json"
897
+ with info_file.open("w") as f:
898
+ json.dump(self.tokenizer_config, f, indent=4)
899
+
900
+ def load_json(self, path: Path) -> dict:
901
+ with path.open("r") as f:
902
+ return json.load(f)
903
+
904
+ class SPTokenizer(HFGPTXTokenizer):
905
+ model_file_glob = "*tokenizer.model"
906
+ vocab_files_names = {"tokenizer_file": "tokenizer.model"}
907
+ decode_kwargs = ["num_threads"]
908
+ # `is_continuation` does not work without this, but it doesn't
909
+ # implement all APIs of `PreTrainedTokenizer`.
910
+ def encode(self, text: str, **kwargs) -> List[int]:
911
+ return_tokens = kwargs.pop('return_tokens', False)
912
+ is_continuation = kwargs.pop('is_continuation', False)
913
+ return self._encode(
914
+ text,
915
+ return_tokens=return_tokens,
916
+ is_continuation=is_continuation,
917
+ )
918
+
919
+ def __init__(self, *args, **kwargs):
920
+ super().__init__(*args, **kwargs)
921
+
922
+ self.eos_token = "</s>"
923
+ self.eos_token_id = 2
924
+ self.system_messages_by_lang = { # translations by deepl / google translate
925
+ "BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.", # noqa
926
+ "CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.", # noqa
927
+ "DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.", # noqa
928
+ "DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.", # noqa
929
+ "EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.", # noqa
930
+ "EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.", # noqa
931
+ "ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.", # noqa
932
+ "ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.", # noqa
933
+ "FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.", # noqa
934
+ "FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.", # noqa
935
+ "GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.", # noqa
936
+ "HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.", # noqa
937
+ "HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.", # noqa
938
+ "IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.", # noqa
939
+ "LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.", # noqa
940
+ "LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.", # noqa
941
+ "MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.", # noqa
942
+ "NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.", # noqa
943
+ "PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.", # noqa
944
+ "PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.", # noqa
945
+ "RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.", # noqa
946
+ "SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.", # noqa
947
+ "SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.", # noqa
948
+ "SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.", # noqa
949
+ }
950
+ chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n"
951
+ self.chat_template = {
952
+ lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
953
+ for lang, sys_msg in self.system_messages_by_lang.items()
954
+ }
955
+
956
+ output = self.tok.decode(input=token_ids, num_threads=num_threads)
957
+ if skip_special_tokens:
958
+ for substring in self.additional_special_tokens:
959
+ output = output.replace(substring, "")
960
+
961
+ if clean_up_tokenization_spaces:
962
+ warnings.warn(
963
+ "when cleaning up tokenization spaces, this will not behave "
964
+ "like the original `GPTXTokenizer`., Please supply "
965
+ "`clean_up_tokenization_spaces=False` for decoding."
966
+ )
967
+ output = self.clean_up_tokenization(output)
968
+
969
+ return output
970
+
971
+
972
+ def _convert_id_to_token(self, index: int) -> str:
973
+ """
974
+ Convert a token ID to its corresponding token string.
975
+ Args:
976
+ index (int): Token ID.
977
+ Returns:
978
+ str: Corresponding token string.
979
+ """
980
+ return self.tok.IdToPiece(index)
981
+
982
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
983
+ """
984
+ Convert a list of tokens into a single string.
985
+ Args:
986
+ tokens (List[str]): List of token strings.
987
+ Returns:
988
+ str: Concatenated string of tokens.
989
+ """
990
+ return self.tok.DecodePieces(tokens)
991
+
992
+ def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str:
993
+ """
994
+ Internal method to decode token IDs with additional arguments.
995
+ Args:
996
+ token_ids (List[int]): List of token IDs.
997
+ **kwargs: Additional arguments to pass to the decode method.
998
+ Returns:
999
+ str: Decoded string.
1000
+ This method also issues a warning if unsupported arguments are provided.
1001
+ """
1002
+ passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs}
1003
+ if len(passed_kwargs) != len(kwargs):
1004
+ warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.")
1005
+ text = self.decode(token_ids, **passed_kwargs)
1006
+ return text
1007
+
1008
+ def save_tokenizer(self, save_dir: str) -> None:
1009
+ if not os.path.isdir(save_dir):
1010
+ print(f"Vocabulary path ({save_dir}) should be a directory")
1011
+ return
1012
+ out_vocab_file = os.path.join(save_dir, "tokenizer.model")
1013
+
1014
+ # if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
1015
+ # copyfile(self.vocab_file, out_vocab_file)
1016
+ # elif not os.path.isfile(self.vocab_file):
1017
+ with open(out_vocab_file, "wb") as f:
1018
+ content_spiece_model = self.tok.serialized_model_proto()
1019
+ f.write(content_spiece_model)
1020
+
1021
+ return (out_vocab_file,)
1022
+
1023
+ def _decode(
1024
+ self,
1025
+ token_ids: List[int],
1026
+ skip_special_tokens: bool = False,
1027
+ clean_up_tokenization_spaces: bool = None,
1028
+ spaces_between_special_tokens: bool = True,
1029
+ **kwargs: Any,
1030
+ ) -> str:
1031
+ text = self._tok_decode(
1032
+ token_ids,
1033
+ skip_special_tokens=skip_special_tokens,
1034
+ spaces_between_special_tokens=spaces_between_special_tokens,
1035
+ **kwargs,
1036
+ )
1037
+
1038
+ clean_up_tokenization_spaces = (
1039
+ clean_up_tokenization_spaces
1040
+ if clean_up_tokenization_spaces is not None
1041
+ else self.clean_up_tokenization_spaces
1042
+ )
1043
+ if clean_up_tokenization_spaces:
1044
+ warnings.warn(
1045
+ "when cleaning up tokenization spaces, this will not behave "
1046
+ "like the original `GPTXTokenizer`., Please supply "
1047
+ "`clean_up_tokenization_spaces=False` for decoding."
1048
+ )
1049
+ clean_text = self.clean_up_tokenization(text)
1050
+ return clean_text
1051
+ else:
1052
+ return text
1053
+
1054
+ def save_vocabulary(
1055
+ self,
1056
+ save_directory: str,
1057
+ filename_prefix: Optional[str] = None,
1058
+ ) -> Tuple[str]:
1059
+ filename_prefix = filename_prefix + "-" if filename_prefix else ""
1060
+ save_directory = Path(save_directory)
1061
+
1062
+ self._save_tokenizer_config(save_directory, filename_prefix)
1063
+ tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix)
1064
+
1065
+ return (tokenizer_file_path,)
1066
+
1067
+ def _save_tokenizer_config(
1068
+ self,
1069
+ save_directory: Path,
1070
+ filename_prefix: str,
1071
+ ) -> str:
1072
+ self.save_tokenizer_config(save_directory)
1073
+ old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE
1074
+ assert old_tokenizer_config_path.is_file(), "tokenizer config path changed"
1075
+ new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name)
1076
+ old_tokenizer_config_path.replace(new_tokenizer_config_path)
1077
+ return str(new_tokenizer_config_path)
1078
+
1079
+ def _find_tokenizer_files(self, save_directory: Path) -> List[Path]:
1080
+ files = list(Path(save_directory).glob(self.model_file_glob))
1081
+ return files
1082
+
1083
+ def _get_tokenizer_file(self, files: List[Path]):
1084
+ assert files, "no saved tokenizer file found"
1085
+ assert len(files) <= 1, "cannot handle multiple saved tokenizer files"
1086
+ return files[0]
1087
+
1088
+ def _save_tokenizer(
1089
+ self,
1090
+ save_directory: Path,
1091
+ filename_prefix: str,
1092
+ ) -> str:
1093
+ self.save_tokenizer(str(save_directory))
1094
+ tokenizer_files = self._find_tokenizer_files(save_directory)
1095
+ old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files)
1096
+ assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file"
1097
+ new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"])
1098
+ old_tokenizer_file_path.replace(new_tokenizer_file_path)
1099
+ return str(new_tokenizer_file_path)
1100
+
1101
+ def save_tokenizer_config(self, save_dir: Path) -> None:
1102
+ # convert Path to str
1103
+ for k in self.tokenizer_config:
1104
+ if isinstance(self.tokenizer_config[k], Path):
1105
+ self.tokenizer_config[k] = str(self.tokenizer_config[k])
1106
+
1107
+ info_file = save_dir / "tokenizer_config.json"
1108
+ with info_file.open("w") as f:
1109
+ json.dump(self.tokenizer_config, f, indent=4)
1110
+
1111
+ def load_json(self, path: Path) -> dict:
1112
+ with path.open("r") as f:
1113
+ return json.load(f)
1114
+
1115
+ class SPTokenizer(HFGPTXTokenizer):
1116
+ model_file_glob = "*tokenizer.model"
1117
+ vocab_files_names = {"tokenizer_file": "tokenizer.model"}
1118
+ decode_kwargs = ["num_threads"]
1119
+ # `is_continuation` does not work without this, but it doesn't
1120
+ # implement all APIs of `PreTrainedTokenizer`.
1121
+ def encode(self, text: str, **kwargs) -> List[int]:
1122
+ return_tokens = kwargs.pop('return_tokens', False)
1123
+ is_continuation = kwargs.pop('is_continuation', False)
1124
+ return self._encode(
1125
+ text,
1126
+ return_tokens=return_tokens,
1127
+ is_continuation=is_continuation,
1128
+ )
1129
+
1130
+ def __init__(self, *args, **kwargs):
1131
+ super().__init__(*args, **kwargs)
1132
+
1133
+ self.eos_token = "</s>"
1134
+ self.eos_token_id = 2
1135
+ self.system_messages_by_lang = { # translations by deepl / google translate
1136
+ "BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.", # noqa
1137
+ "CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.", # noqa
1138
+ "DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.", # noqa
1139
+ "DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.", # noqa
1140
+ "EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.", # noqa
1141
+ "EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.", # noqa
1142
+ "ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.", # noqa
1143
+ "ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.", # noqa
1144
+ "FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.", # noqa
1145
+ "FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.", # noqa
1146
+ "GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.", # noqa
1147
+ "HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.", # noqa
1148
+ "HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.", # noqa
1149
+ "IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.", # noqa
1150
+ "LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.", # noqa
1151
+ "LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.", # noqa
1152
+ "MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.", # noqa
1153
+ "NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.", # noqa
1154
+ "PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.", # noqa
1155
+ "PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.", # noqa
1156
+ "RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.", # noqa
1157
+ "SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.", # noqa
1158
+ "SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.", # noqa
1159
+ "SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.", # noqa
1160
+ }
1161
+ chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n"
1162
+ self.chat_template = {
1163
+ lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template
1164
+ for lang, sys_msg in self.system_messages_by_lang.items()
1165
+ }
1166
  output = self.tok.decode(input=token_ids, num_threads=num_threads)
1167
  if skip_special_tokens:
1168
  for substring in self.additional_special_tokens: