https://huggingface.co./jmtzt/ijepa_vith16_1k with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @huggingface/transformers

Example: Image feature extraction with onnx-community/ijepa_vith16_1k.

import { pipeline, cos_sim } from "@huggingface/transformers";

// Create an image feature extraction pipeline
const extractor = await pipeline(
  "image-feature-extraction",
  "onnx-community/ijepa_vith16_1k",
  { dtype: "q8" },
);

// Compute image embeddings
const url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
const url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
const output = await extractor([url_1, url_2]);
const pooled_output = output.mean(1); // Apply mean pooling

// Compute cosine similarity
const similarity = cos_sim(pooled_output[0].data, pooled_output[1].data);
console.log(similarity); // 0.5334921616321957

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
35
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-feature-extraction models for transformers.js library.

Model tree for onnx-community/ijepa_vith16_1k

Quantized
(1)
this model