Bitsandbytes quantization of https://huggingface.co./simplescaling/s1-32B.
See https://huggingface.co./blog/4bit-transformers-bitsandbytes for instructions.
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
import torch
# Define the 4-bit configuration
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the pre-trained model with the 4-bit quantization configuration
model = AutoModelForCausalLM.from_pretrained("simplescaling/s1-32B", quantization_config=nf4_config)
# Load the tokenizer associated with the model
tokenizer = AutoTokenizer.from_pretrained("simplescaling/s1-32B")
# Push the model and tokenizer to the Hugging Face hub
model.push_to_hub("onekq-ai/s1-32B-bnb-4bit", use_auth_token=True)
tokenizer.push_to_hub("onekq-ai/s1-32B-bnb-4bit", use_auth_token=True)
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for onekq-ai/s1-32B-bnb-4bit
Base model
simplescaling/s1-32B