Flux-dev-de-distill

This is an experiment to de-distill guidance from flux.1-dev. We removed the original distilled guidance and make true classifier-free guidance reworks.

Model Details

Following Algorithm 1 in On Distillation of Guided Diffusion Models, we attempted to reverse the distillation process by re-matching guidance scale w. we introduce a student model x(zt) to match the output of the teacher at any time-step t ∈ [0, 1] and any guidance scale w ∈ [1, 4]. We initialize the student model with parameters from the teacher model except for the parameters related to w-embedding.

Since this model uses true CFG instead of distilled CFG, it is not compatible with diffusers pipeline. Please use inference script or manually add guidance in the iteration loop.

Train: 150K Unsplash images, 1024px square, 6k steps with global batch size 32, frozen teacher model, approx 12 hours due to limited compute.

Examples: Distilled CFG / True CFG

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for nyanko7/flux-dev-de-distill

Finetuned
(327)
this model

Spaces using nyanko7/flux-dev-de-distill 2