|
--- |
|
license: mit |
|
license_link: https://huggingface.co./nvidia/BigVGAN/blob/main/LICENSE |
|
tags: |
|
- neural-vocoder |
|
- audio-generation |
|
library_name: PyTorch |
|
pipeline_tag: audio-to-audio |
|
--- |
|
|
|
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training |
|
|
|
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon |
|
|
|
[[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co./collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co./spaces/nvidia/BigVGAN) |
|
|
|
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bigvgan-a-universal-neural-vocoder-with-large/speech-synthesis-on-libritts)](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large) |
|
|
|
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center> |
|
|
|
## News |
|
- **Jul 2024 (v2.3):** |
|
- General refactor and code improvements for improved readability. |
|
- Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark. |
|
|
|
- **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio. |
|
|
|
- **Jul 2024 (v2.1):** BigVGAN is now integrated with 🤗 Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces. |
|
|
|
- **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights: |
|
- Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU. |
|
- Improved discriminator and loss: BigVGAN-v2 is trained using a multi-scale sub-band CQT discriminator and a multi-scale mel spectrogram loss. |
|
- Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments. |
|
- We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio. |
|
|
|
## Installation |
|
This repository contains pretrained BigVGAN checkpoints with easy access to inference and additional `huggingface_hub` support. |
|
|
|
If you are interested in training the model and additional functionalities, please visit the official GitHub repository for more information: https://github.com/NVIDIA/BigVGAN |
|
|
|
```shell |
|
git lfs install |
|
git clone https://huggingface.co./nvidia/bigvgan_v2_44khz_128band_256x |
|
``` |
|
|
|
## Usage |
|
|
|
Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input. |
|
|
|
```python |
|
device = 'cuda' |
|
|
|
import torch |
|
import bigvgan |
|
import librosa |
|
from meldataset import get_mel_spectrogram |
|
|
|
# instantiate the model. You can optionally set use_cuda_kernel=True for faster inference. |
|
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_256x', use_cuda_kernel=False) |
|
|
|
# remove weight norm in the model and set to eval mode |
|
model.remove_weight_norm() |
|
model = model.eval().to(device) |
|
|
|
# load wav file and compute mel spectrogram |
|
wav_path = '/path/to/your/audio.wav' |
|
wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1] |
|
wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time] |
|
|
|
# compute mel spectrogram from the ground truth audio |
|
mel = get_mel_spectrogram(wav, model.h).to(device) # mel is FloatTensor with shape [B(1), C_mel, T_frame] |
|
|
|
# generate waveform from mel |
|
with torch.inference_mode(): |
|
wav_gen = model(mel) # wav_gen is FloatTensor with shape [B(1), 1, T_time] and values in [-1, 1] |
|
wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time] |
|
|
|
# you can convert the generated waveform to 16 bit linear PCM |
|
wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype |
|
``` |
|
|
|
## Using Custom CUDA Kernel for Synthesis |
|
You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN: |
|
|
|
```python |
|
import bigvgan |
|
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_256x', use_cuda_kernel=True) |
|
``` |
|
|
|
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`. |
|
|
|
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using. |
|
|
|
For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis |
|
|
|
|
|
## Pretrained Models |
|
|
|
We provide the [pretrained models on Hugging Face Collections](https://huggingface.co./collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a). |
|
One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories. |
|
|
|
| Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned | |
|
|:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:| |
|
| [bigvgan_v2_44khz_128band_512x](https://huggingface.co./nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 5M | No | |
|
| [bigvgan_v2_44khz_128band_256x](https://huggingface.co./nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 5M | No | |
|
| [bigvgan_v2_24khz_100band_256x](https://huggingface.co./nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 5M | No | |
|
| [bigvgan_v2_22khz_80band_256x](https://huggingface.co./nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 5M | No | |
|
| [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co./nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 5M | No | |
|
| [bigvgan_24khz_100band](https://huggingface.co./nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No | |
|
| [bigvgan_base_24khz_100band](https://huggingface.co./nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No | |
|
| [bigvgan_22khz_80band](https://huggingface.co./nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No | |
|
| [bigvgan_base_22khz_80band](https://huggingface.co./nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No | |