Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e19bfcd47eee0793_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e19bfcd47eee0793_train_data.json
  type:
    field_instruction: question
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 2
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/3b8e9131-9c75-4ca8-a762-272e5455aa24
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 3000
micro_batch_size: 4
mlflow_experiment_name: /tmp/e19bfcd47eee0793_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: da151837-7ca6-4456-8ebe-70122bab95d5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: da151837-7ca6-4456-8ebe-70122bab95d5
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

3b8e9131-9c75-4ca8-a762-272e5455aa24

This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 0.6806
0.3023 0.0426 150 0.3047
0.283 0.0851 300 0.2973
0.2874 0.1277 450 0.2886
0.2848 0.1703 600 0.2836
0.2812 0.2128 750 0.2815
0.2704 0.2554 900 0.2769
0.2743 0.2980 1050 0.2748
0.2797 0.3405 1200 0.2718
0.2716 0.3831 1350 0.2686
0.2738 0.4257 1500 0.2676
0.2631 0.4682 1650 0.2636
0.266 0.5108 1800 0.2616
0.2675 0.5533 1950 0.2597
0.2652 0.5959 2100 0.2577
0.2663 0.6385 2250 0.2564
0.2558 0.6810 2400 0.2553
0.2569 0.7236 2550 0.2546
0.2535 0.7662 2700 0.2541
0.2552 0.8087 2850 0.2541
0.254 0.8513 3000 0.2540

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for nttx/3b8e9131-9c75-4ca8-a762-272e5455aa24

Base model

Qwen/Qwen2.5-1.5B
Adapter
(257)
this model