dqn-LunarLander-v2 / README.md
nsanghi's picture
Initial commit
d20404d
metadata
library_name: stable-baselines3
tags:
  - LunarLander-v2
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
model-index:
  - name: DQN
    results:
      - task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: LunarLander-v2
          type: LunarLander-v2
        metrics:
          - type: mean_reward
            value: 173.57 +/- 138.27
            name: mean_reward
            verified: false

DQN Agent playing LunarLander-v2

This is a trained model of a DQN agent playing LunarLander-v2 using the stable-baselines3 library and the RL Zoo.

The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.

Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

Install the RL Zoo (with SB3 and SB3-Contrib):

pip install rl_zoo3
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2  -f logs/

If you installed the RL Zoo3 via pip (pip install rl_zoo3), from anywhere you can do:

python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2  -f logs/

Training (with the RL Zoo)

python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga nsanghi

Hyperparameters

OrderedDict([('batch_size', 128),
             ('buffer_size', 50000),
             ('exploration_final_eps', 0.1),
             ('exploration_fraction', 0.12),
             ('gamma', 0.99),
             ('gradient_steps', -1),
             ('learning_rate', 0.00063),
             ('learning_starts', 0),
             ('n_timesteps', 100000.0),
             ('policy', 'MlpPolicy'),
             ('policy_kwargs', 'dict(net_arch=[256, 256])'),
             ('target_update_interval', 250),
             ('train_freq', 4),
             ('normalize', False)])

Environment Arguments

{'render_mode': 'rgb_array'}