You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

TODO: Add your code

!apt install swig cmake
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt
!sudo apt-get update
!apt install python-opengl
!apt install ffmpeg
!apt install xvfb
!pip3 install pyvirtualdisplay

#might need to restart google colab to run virtual display
#import os
#os.kill(os.getpid(), 9)

# Virtual display
from pyvirtualdisplay import Display

virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()

import gymnasium

from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.

from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env

import gymnasium as gym

# First, we create our environment called LunarLander-v2
env = gym.make("LunarLander-v2")

# Then we reset this environment
observation, info = env.reset()

for _ in range(20):
  # Take a random action
  action = env.action_space.sample()
  print("Action taken:", action)

  # Do this action in the environment and get
  # next_state, reward, terminated, truncated and info
  observation, reward, terminated, truncated, info = env.step(action)
  
  # If the game is terminated (in our case we land, crashed) or truncated (timeout)
  if terminated or truncated:
      # Reset the environment
      print("Environment is reset")
      observation, info = env.reset()

env.close()

# We create our environment with gym.make("<name_of_the_environment>")
env = gym.make("LunarLander-v2")
env.reset()
print("_____OBSERVATION SPACE_____ \n")
print("Observation Space Shape", env.observation_space.shape)
print("Sample observation", env.observation_space.sample()) # Get a random observation

print("\n _____ACTION SPACE_____ \n")
print("Action Space Shape", env.action_space.n)
print("Action Space Sample", env.action_space.sample()) # Take a random action

#Action 0: Do nothing,
#Action 1: Fire left orientation engine,
#Action 2: Fire the main engine,
#Action 3: Fire right orientation engine.

# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=16)

# Create environment
env = gym.make('LunarLander-v2')

# Instantiate the agent - example
#model = PPO('MlpPolicy', env, verbose=1)
# Train the agent
#model.learn(total_timesteps=int(2e5))

#faster learning
model = PPO(
    policy = 'MlpPolicy',
    env = env,
    n_steps = 1024,
    batch_size = 64,
    n_epochs = 4,
    gamma = 0.999,
    gae_lambda = 0.98,
    ent_coef = 0.01,
    verbose=1)

# TODO: Train it for 1,000,000 timesteps
model.learn(total_timesteps = 1000000)
# TODO: Specify file name for model and save the model to file
model_name = "ppo-LunarLander-v2-niftymark"
model.save(model_name)

# TODO: Evaluate the agent
# Create a new environment for evaluation
eval_env = gym.make("LunarLander-v2")

# Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)

# Print the results
print(f"mean_reward = {mean_reward:.2f} +/- {std_reward}")

notebook_login()
!git config --global credential.helper store

#If you don't want to use a Google Colab or a Jupyter Notebook, you need to use this command instead: huggingface-cli login

import gymnasium as gym
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.env_util import make_vec_env

from huggingface_sb3 import package_to_hub

## TODO: Define a repo_id
## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
repo_id = "niftymark/ppo-LunarLander-v2"

# TODO: Define the name of the environment
env_id = "LunarLander-v2"

# Create the evaluation env and set the render_mode="rgb_array"
eval_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])


# TODO: Define the model architecture we used
model_architecture = "PPO"

## TODO: Define the commit message
commit_message = "first commit with working Lunar Lander - mean reward 259.93"

# method save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub
package_to_hub(model=model, # Our trained model
               model_name=model_name, # The name of our trained model 
               model_architecture=model_architecture, # The model architecture we used: in our case PPO
               env_id=env_id, # Name of the environment
               eval_env=eval_env, # Evaluation Environment
               repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
               commit_message=commit_message)

...
Downloads last month
0
Video Preview
loading

Evaluation results