Llama-2-7b-pruned70-retrained

This repo contains model files for a Llama 2 7B model that has had 50% of the parameters pruned in one-shot with SparseGPT, then retrained by Cerebras with 50B tokens from SlimPajama while maintaining sparsity. It was then one-shot pruned to 70% sparsity and trained for another 100B tokens.

Official model weights from Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment.

Authors: Neural Magic, Cerebras

Usage

Below we share some code snippets on how to get quickly started with running the model.

Sparse Transfer

By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process here.

Running the model

This model has not been fine-tuned for instruction-following but may be run with the transformers library. For accelerated inference with sparsity, deploy with nm-vllm or deepsparse.

# pip install transformers accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained")
model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned70-retrained", device_map="auto")

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Evaluation Benchmark Results

Model evaluation metrics and results. [UPDATE]

Benchmark Metric Llama-2-7b Llama-2-7b-pruned70-retrained
MMLU 5-shot 46.9% 36.5%
HellaSwag 0-shot 78.6% 74.1%
WinoGrande 5-shot 74.0% 69.5%
ARC-c 25-shot 53.1% 45.4%
TruthfulQA 5-shot 38.8% 36.7%
GSM8K 5-shot 14.5% 8.0%
HumanEval pass@1 13.4% 14.4%

Model Training Details

[UPDATE]

Help

For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community

Downloads last month
285
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for neuralmagic/Llama-2-7b-pruned70-retrained

Finetuned
(5)
this model
Finetunes
4 models

Dataset used to train neuralmagic/Llama-2-7b-pruned70-retrained

Collection including neuralmagic/Llama-2-7b-pruned70-retrained