Model Card for Model ID
Model Details
Model Description
This model serves as a demonstration of how fine-tuning foundational models using the Neo4j-Text2Cypher(2024) Dataset (link) can enhance performance on the Text2Cypher task.
Please note, this is part of ongoing research and exploration, aimed at highlighting the dataset's potential rather than a production-ready solution.
Base model: google/gemma-2-9b-it
Dataset: neo4j/text2cypher-2024v1
An overview of the finetuned models and benchmarking results are shared at Link1 and Link2
Have ideas or insights? Contact us: Neo4j/Team-GenAI
Bias, Risks, and Limitations
We need to be cautious about a few risks:
- In our evaluation setup, the training and test sets come from the same data distribution (sampled from a larger dataset). If the data distribution changes, the results may not follow the same pattern.
- The datasets used were gathered from publicly available sources. Over time, foundational models may access both the training and test sets, potentially achieving similar or even better results.
Also check the related blogpost:Link
Training Details
Training Procedure
Used RunPod with following setup:
- 1 x A100 PCIe
- 31 vCPU 117 GB RAM
- runpod/pytorch:2.4.0-py3.11-cuda12.4.1-devel-ubuntu22.04
- On-Demand - Secure Cloud
- 60 GB Disk
- 60 GB Pod Volume
Training Hyperparameters
- lora_config = LoraConfig( r=64, lora_alpha=64, target_modules=target_modules, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", )
- sft_config = SFTConfig( dataset_text_field=dataset_text_field, per_device_train_batch_size=4, gradient_accumulation_steps=8, dataset_num_proc=16, max_seq_length=1600, logging_dir="./logs", num_train_epochs=1, learning_rate=2e-5, save_steps=5, save_total_limit=1, logging_steps=5, output_dir="outputs", optim="paged_adamw_8bit", save_strategy="steps", )
- bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, )
Framework versions
- PEFT 0.12.0
Example Cypher generation
from peft import PeftModel, PeftConfig import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) instruction = ( "Generate Cypher statement to query a graph database. " "Use only the provided relationship types and properties in the schema. \n" "Schema: {schema} \n Question: {question} \n Cypher output: " ) def prepare_chat_prompt(question, schema) -> list[dict]: chat = [ { "role": "user", "content": instruction.format( schema=schema, question=question ), } ] return chat def _postprocess_output_cypher(output_cypher: str) -> str: # Remove any explanation. E.g. MATCH...\n\n**Explanation:**\n\n -> MATCH... # Remove cypher indicator. E.g.```cypher\nMATCH...```` --> MATCH... # Note: Possible to have both: # E.g. ```cypher\nMATCH...````\n\n**Explanation:**\n\n --> MATCH... partition_by = "**Explanation:**" output_cypher, _, _ = output_cypher.partition(partition_by) output_cypher = output_cypher.strip("`\n") output_cypher = output_cypher.lstrip("cypher\n") output_cypher = output_cypher.strip("`\n ") return output_cypher # Model model_name = "neo4j/text2cypher-gemma-2-9b-it-finetuned-2024v1" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, torch_dtype=torch.bfloat16, attn_implementation="eager", low_cpu_mem_usage=True, ) # Question question = "What are the movies of Tom Hanks?" schema = "(:Actor)-[:ActedIn]->(:Movie)" new_message = prepare_chat_prompt(question=question, schema=schema) prompt = tokenizer.apply_chat_template(new_message, add_generation_prompt=True, tokenize=False) inputs = tokenizer(prompt, return_tensors="pt", padding=True) # Any other parameters model_generate_parameters = { "top_p": 0.9, "temperature": 0.2, "max_new_tokens": 512, "do_sample": True, "pad_token_id": tokenizer.eos_token_id, } inputs.to(model.device) model.eval() with torch.no_grad(): tokens = model.generate(**inputs, **model_generate_parameters) tokens = tokens[:, inputs.input_ids.shape[1] :] raw_outputs = tokenizer.batch_decode(tokens, skip_special_tokens=True) outputs = [_postprocess_output_cypher(output) for output in raw_outputs] print(outputs) > ["MATCH (a:Actor {Name: 'Tom Hanks'})-[:ActedIn]->(m:Movie) RETURN m"]
- Downloads last month
- 2,437
Inference API (serverless) does not yet support peft models for this pipeline type.