mT5 Persian Summary
This model is fine-tuned to generate summaries based on the input provided. It has been fine-tuned on a wide range of Persian news data, including BBC news and pn_summary.
Usage
from transformers import AutoModelForSeq2SeqLM, MT5Tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained('nafisehNik/mt5-persian-summary')
tokenizer = MT5Tokenizer.from_pretrained("nafisehNik/mt5-persian-summary")
# method for summary generation, using the global model and tokenizer
def generate_summary(model, abstract, num_beams = 2, repetition_penalty = 1.0,
length_penalty = 2.0, early_stopping = True, max_output_length = 120):
source_encoding=tokenizer(abstract, max_length=1000, padding="max_length", truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt")
generated_ids=model.generate(
input_ids=source_encoding["input_ids"],
attention_mask=source_encoding["attention_mask"],
num_beams=num_beams,
max_length=max_output_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
early_stopping=early_stopping,
use_cache=True
)
preds=[tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for gen_id in generated_ids]
return "".join(preds)
text = "YOUR INPUT TEXT"
result = generate_summary(model=model, abstract=text, num_beams=2, max_output_length=120)
Citation
If you find this model useful, make a link to the huggingface model.
- Downloads last month
- 232
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.