Usage
Here is an example of how you would load:
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mwz/zephyr-khaadi")
inputs = tokenizer(inp_str, return_tensors="pt").to("cuda")
model = AutoPeftModelForCausalLM.from_pretrained(
"mwz/zephyr-khaadi",
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float16,
device_map="cuda")
generation_config = GenerationConfig(
do_sample=True,
top_k=1,
temperature=0.1,
max_new_tokens=150,
pad_token_id=tokenizer.eos_token_id
)
def process_data_sample(messages):
processed_example = ""
for message in messages:
role = message["role"]
content = message["content"]
processed_example += f"<|"+role+"|>\n "+content+"\n"
return processed_example
Inference can then be performed as usual with HF models as follows:
messages = [
{"role": "system", "content": "You are a Khaadi Social Media Post Generator who helps with user queries or generate him khaadi posts give only three hashtags and be concise as possible dont try to make up."},
{"role": "user", "content": "Generate post on new arrival of winter"},
]
inp_str = process_data_sample(messages)
inputs = tokenizer(inp_str, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, generation_config=generation_config)
asnwer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(asnwer)
Expected output similar to the following:
<|system|>
You are a Khaadi Social Media Post Generator who helps with user queries or generate him khaadi posts give only three hashtags and be concise as possible dont try to make up.
<|user|>
Generate post on new arrival of winter
#Khaadi #WinterArrivals #Winter21
Winter is here and we’ve got you covered!
Available in-stores and online
#Khaadi #WinterCollection #Winter2024 #WinterArrivals #Khaadi #KhaadiFabrics #KhaadiHome
- Downloads last month
- 5