A newer version of this model is available:
mattshumer/Reflection-Llama-3.1-70B
Law Buddy Backend Integration Guide
Overview
Law Buddy is an AI-powered legal assistant platform built using FastAPI and Llama 2. This guide provides detailed information for developers looking to integrate with or extend the Law Buddy backend.
Table of Contents
- Prerequisites
- Installation
- Configuration
- API Endpoints
- Model Integration
- Development Guidelines
- Error Handling
- Security Considerations
- Performance Optimization
- Deployment
- Troubleshooting
Prerequisites
Required Software
- Python 3.8+
- CUDA-capable GPU (recommended for production)
- Git
- Virtual environment tool (e.g., venv, conda)
Required Packages
pip install fastapi==0.68.0
pip install uvicorn==0.15.0
pip install transformers==4.30.0
pip install torch==2.0.0
pip install pydantic==1.8.2
pip install python-jwt==3.3.0
pip install python-multipart==0.0.5
Installation
- Clone the repository:
git clone https://github.com/your-org/law-buddy.git
cd law-buddy
- Create and activate virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Download the Llama 2 model:
# Option 1: Using Hugging Face CLI
huggingface-cli download meta-llama/Llama-2-7b-chat-hf
# Option 2: Using Python script
python scripts/download_model.py
Configuration
Environment Variables
Create a .env
file in the root directory:
# Model Configuration
MODEL_PATH="meta-llama/Llama-2-7b-chat-hf"
MODEL_DEVICE="cuda" # or "cpu"
MAX_LENGTH=512
TEMPERATURE=0.7
TOP_P=0.95
# API Configuration
API_HOST="0.0.0.0"
API_PORT=8000
DEBUG_MODE=True
# Security
JWT_SECRET="your-secret-key"
JWT_ALGORITHM="HS256"
ACCESS_TOKEN_EXPIRE_MINUTES=30
Model Configuration
Adjust model parameters in config/model_config.py
:
MODEL_CONFIG = {
"max_length": 512,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True,
"num_return_sequences": 1
}
API Endpoints
Chat Endpoint
POST /chat
Content-Type: application/json
{
"user_input": string,
"context": string (optional)
}
Response:
{
"response": string,
"confidence": float,
"references": array[string]
}
Categories Endpoint
GET /categories
Response:
{
"categories": [
"criminal_law",
"civil_law",
"family_law",
"corporate_law",
"intellectual_property"
]
}
Model Integration
Custom Prompt Templates
Create new prompt templates in templates/prompts.py
:
def create_legal_prompt(user_input: str, context: str = None) -> str:
base_prompt = """You are Law Buddy, an AI legal assistant...
User Query: {query}
"""
return base_prompt.format(query=user_input)
Extending Model Functionality
Add new model capabilities in services/model_service.py
:
async def process_legal_query(
user_input: str,
context: Optional[str] = None,
include_references: bool = True
) -> dict:
# Your implementation here
pass
Development Guidelines
Code Structure
law-buddy/
βββ api/
β βββ endpoints/
β βββ middleware/
β βββ dependencies/
βββ core/
β βββ config.py
β βββ security.py
βββ models/
β βββ request_models.py
β βββ response_models.py
βββ services/
β βββ model_service.py
β βββ legal_service.py
βββ templates/
β βββ prompts.py
βββ utils/
β βββ helpers.py
βββ main.py
βββ requirements.txt
Adding New Features
- Create feature branch:
git checkout -b feature/your-feature-name
- Implement endpoint in
api/endpoints/
:
@router.post("/your-endpoint")
async def your_endpoint(data: YourRequestModel):
# Implementation
pass
- Add service logic in
services/
:
class YourService:
def process_data(self, data: dict) -> dict:
# Implementation
pass
Error Handling
Custom Exceptions
Create custom exceptions in core/exceptions.py
:
class LegalAssistantException(Exception):
def __init__(self, message: str, status_code: int = 400):
self.message = message
self.status_code = status_code
Exception Handlers
Add handlers in api/middleware/error_handlers.py
:
@app.exception_handler(LegalAssistantException)
async def legal_assistant_exception_handler(request, exc):
return JSONResponse(
status_code=exc.status_code,
content={"error": exc.message}
)
Security Considerations
- Input Validation
class ChatInput(BaseModel):
user_input: str = Field(..., min_length=1, max_length=1000)
context: Optional[str] = Field(None, max_length=500)
- Rate Limiting
from fastapi import Request
from fastapi.middleware.throttling import ThrottlingMiddleware
app.add_middleware(
ThrottlingMiddleware,
rate_limit=100, # requests
time_window=3600 # seconds
)
Performance Optimization
- Model Optimization
def optimize_model():
model.half() # Convert to FP16
model.eval() # Set to evaluation mode
torch.backends.cudnn.benchmark = True
- Caching
from fastapi_cache import FastAPICache
from fastapi_cache.backends.redis import RedisBackend
@app.on_event("startup")
async def startup():
FastAPICache.init(RedisBackend(), prefix="law-buddy-cache")
Deployment
Docker Deployment
FROM python:3.8-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
Build and run:
docker build -t law-buddy .
docker run -p 8000:8000 law-buddy
Production Considerations
- Use environment variables for sensitive data
- Implement proper logging
- Set up monitoring
- Configure CORS properly
- Implement rate limiting
- Use HTTPS
- Set up database backups
Troubleshooting
Common Issues
- Model Loading Errors
try:
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
except Exception as e:
logger.error(f"Model loading error: {str(e)}")
# Fallback logic
- Memory Issues
import torch
torch.cuda.empty_cache() # Clear CUDA cache
# Monitor memory usage
print(f"GPU Memory: {torch.cuda.memory_allocated()/1024**2:.2f}MB")
- API Response Times
import time
@app.middleware("http")
async def add_process_time_header(request: Request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(process_time)
return response
Contributing
- Fork the repository
- Create feature branch
- Commit changes
- Create pull request
Follow the coding style guide and include tests for new features.
Support
For technical support:
- Create an issue in the GitHub repository
- Contact the development team at
- Check the documentation at
License
This project is licensed under the MIT License - see the LICENSE file for details.
- Downloads last month
- 0