fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of indolem/indobert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0883
- Exact Match: 65.4450
- F1: 70.8022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.2828 |
0.49 |
36 |
2.6576 |
49.7382 |
49.7756 |
3.794 |
0.98 |
72 |
1.9936 |
49.8691 |
49.8691 |
2.2086 |
1.47 |
108 |
1.8469 |
49.2147 |
49.5992 |
2.2086 |
1.96 |
144 |
1.7445 |
50.5236 |
51.9107 |
2.0123 |
2.46 |
180 |
1.6178 |
49.8691 |
54.4031 |
1.7802 |
2.95 |
216 |
1.4800 |
54.8429 |
58.8765 |
1.5945 |
3.44 |
252 |
1.3337 |
57.5916 |
62.8748 |
1.5945 |
3.93 |
288 |
1.3153 |
58.2461 |
63.4667 |
1.4083 |
4.42 |
324 |
1.2184 |
59.8168 |
65.4478 |
1.2513 |
4.91 |
360 |
1.2348 |
58.3770 |
64.1649 |
1.2513 |
5.4 |
396 |
1.1415 |
62.6963 |
68.0081 |
1.161 |
5.89 |
432 |
1.1463 |
62.6963 |
67.6633 |
1.0755 |
6.38 |
468 |
1.1126 |
63.4817 |
68.7554 |
1.0099 |
6.87 |
504 |
1.0823 |
63.4817 |
68.9182 |
1.0099 |
7.37 |
540 |
1.0547 |
66.2304 |
71.2423 |
0.9815 |
7.86 |
576 |
1.0835 |
63.4817 |
69.1031 |
0.9464 |
8.35 |
612 |
1.0644 |
66.3613 |
71.4374 |
0.9464 |
8.84 |
648 |
1.0642 |
65.9686 |
71.2813 |
0.9325 |
9.33 |
684 |
1.0786 |
65.4450 |
70.8541 |
0.913 |
9.82 |
720 |
1.0883 |
65.4450 |
70.8022 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2