PEFT
Safetensors
llama
Generated from Trainer

Llama-3 8B Self-Instruct: PEFT Edition

This model is the result of recreating the StarCoder2 Self-Instruct pipeline, but applied to Llama-3-8B.

It could not have been done without the blood, sweat, and tears of my dear friends who have helped me along the way with training my first LLM.

A blog will come shortly detailing the many training runs and failures during this.

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: llama3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: llama-3-8b-self-align-data-generation-results/sanitized.jsonl
    ds_type: json
    type:
      system_prompt: "You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions."
      field_system: system
      field_instruction: instruction
      field_output: response
      format: "### Instruction:\n{instruction}\n\n### Response:\n"
      no_input_format: "### Instruction:\n{instruction}\n\n### Response:\n"
dataset_prepared_path:
val_set_size: 0.05

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter: qlora
save_safetensors: true
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

log_with: None
wandb_project: llama-3-8b-self-align-axolotl
wandb_entity:
wandb_watch:
wandb_name: qlora-prince-hps-promptfix

output_dir: qlora_decrease_lr_promptfix
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: false
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: false
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<|end_of_text|>"
tokens:
  - "<|im_start|>"
  - "<|im_end|>"
lora_modules_to_save:
  - embed_tokens
  - lm_head

Visualize in Weights & Biases

qlora_decrease_lr_promptfix

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.6903 0.0061 1 0.6706
0.6463 0.1285 21 0.6392
0.4944 0.2571 42 0.4806
0.4495 0.3856 63 0.4532
0.4444 0.5142 84 0.4406
0.4185 0.6427 105 0.4334
0.4336 0.7712 126 0.4286
0.4061 0.8998 147 0.4252
0.4002 1.0145 168 0.4221
0.4013 1.1431 189 0.4205
0.3674 1.2716 210 0.4189
0.3942 1.4002 231 0.4175
0.3984 1.5287 252 0.4165
0.3867 1.6572 273 0.4150
0.3872 1.7858 294 0.4137
0.401 1.9143 315 0.4130
0.3602 2.0275 336 0.4126
0.3817 2.1561 357 0.4131
0.3592 2.2846 378 0.4129
0.3729 2.4132 399 0.4127
0.372 2.5417 420 0.4121
0.3685 2.6702 441 0.4120
0.3732 2.7988 462 0.4115
0.38 2.9273 483 0.4112
0.3637 3.0413 504 0.4114
0.3628 3.1699 525 0.4118
0.355 3.2984 546 0.4122
0.3646 3.4269 567 0.4121
0.3496 3.5555 588 0.4121
0.3573 3.6840 609 0.4121
0.3598 3.8125 630 0.4121
0.3669 3.9411 651 0.4121

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for muellerzr/llama-3-8B-self-instruct-LoRA

Adapters
1 model

Dataset used to train muellerzr/llama-3-8B-self-instruct-LoRA