v4_mistral_lora

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2886
  • Accuracy: 0.8631
  • Precision: 0.8457
  • Recall: 0.6260
  • F1: 0.7195

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 89234
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 72
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0 0 0.5995 0.7340 0.6 0.1535 0.2445
0.7266 0.0251 20 0.5909 0.7384 0.6232 0.1693 0.2663
0.674 0.0502 40 0.5497 0.7517 0.6526 0.2441 0.3553
0.5187 0.0753 60 0.4896 0.7759 0.6409 0.4567 0.5333
0.4811 0.1004 80 0.4410 0.7958 0.7066 0.4646 0.5606
0.2811 0.1255 100 0.4249 0.8102 0.7595 0.4724 0.5825
0.2959 0.1506 120 0.3751 0.8212 0.7674 0.5197 0.6197
0.336 0.1757 140 0.3764 0.8278 0.8451 0.4724 0.6061
0.3239 0.2008 160 0.3608 0.8201 0.8421 0.4409 0.5788
0.2767 0.2259 180 0.3362 0.8543 0.8112 0.6260 0.7067
0.276 0.2510 200 0.3406 0.8389 0.8462 0.5197 0.6439
0.2715 0.2762 220 0.3223 0.8411 0.8274 0.5472 0.6588
0.2737 0.3013 240 0.3202 0.8521 0.8125 0.6142 0.6996
0.3245 0.3264 260 0.3098 0.8466 0.8249 0.5748 0.6775
0.2868 0.3515 280 0.3159 0.8433 0.7887 0.6024 0.6830
0.2601 0.3766 300 0.3105 0.8587 0.7669 0.7126 0.7388
0.2597 0.4017 320 0.3162 0.8510 0.8362 0.5827 0.6868
0.287 0.4268 340 0.2997 0.8532 0.8071 0.6260 0.7051
0.3115 0.4519 360 0.3028 0.8543 0.8315 0.6024 0.6986
0.2654 0.4770 380 0.3008 0.8543 0.8245 0.6102 0.7014
0.2443 0.5021 400 0.2955 0.8565 0.8039 0.6457 0.7162
0.2743 0.5272 420 0.3011 0.8543 0.8389 0.5945 0.6959
0.2248 0.5523 440 0.3031 0.8532 0.8380 0.5906 0.6928
0.2149 0.5774 460 0.2868 0.8609 0.7991 0.6732 0.7308
0.1998 0.6025 480 0.2975 0.8587 0.8316 0.6220 0.7117
0.2459 0.6276 500 0.2978 0.8510 0.8324 0.5866 0.6882
0.1953 0.6527 520 0.2989 0.8576 0.8492 0.5984 0.7021
0.3153 0.6778 540 0.2864 0.8642 0.8359 0.6417 0.7261
0.2172 0.7029 560 0.3190 0.8444 0.8844 0.5118 0.6484
0.2604 0.7280 580 0.2830 0.8687 0.8358 0.6614 0.7385
0.2671 0.7531 600 0.2970 0.8565 0.8523 0.5906 0.6977
0.2049 0.7782 620 0.2862 0.8587 0.8316 0.6220 0.7117
0.2972 0.8033 640 0.2890 0.8609 0.8404 0.6220 0.7149
0.1953 0.8285 660 0.2911 0.8609 0.8441 0.6181 0.7136
0.24 0.8536 680 0.2824 0.8653 0.8367 0.6457 0.7289
0.282 0.8787 700 0.2860 0.8631 0.8385 0.6339 0.7220
0.1931 0.9038 720 0.2885 0.8620 0.8413 0.6260 0.7178
0.2251 0.9289 740 0.2898 0.8631 0.8457 0.6260 0.7195
0.178 0.9540 760 0.2889 0.8631 0.8457 0.6260 0.7195
0.2431 0.9791 780 0.2886 0.8631 0.8457 0.6260 0.7195

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mtzig/v4_mistral_lora_bugged

Adapter
(20)
this model