v3_mistral_lora

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 8569382
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0 0 0.4941 0.7546 0.6364 0.2526 0.3616
0.483 0.0169 20 0.4898 0.7645 0.7 0.2526 0.3712
0.5491 0.0339 40 0.4646 0.7716 0.7705 0.2423 0.3686
0.3868 0.0508 60 0.3927 0.8014 0.8462 0.3402 0.4853
0.2752 0.0678 80 0.2430 0.9149 0.9589 0.7216 0.8235
0.1319 0.0847 100 0.0990 0.9716 0.9531 0.9433 0.9482
0.0971 0.1017 120 0.0422 0.9915 0.9747 0.9948 0.9847
0.0478 0.1186 140 0.0120 0.9986 1.0 0.9948 0.9974
0.0373 0.1356 160 0.0099 0.9986 1.0 0.9948 0.9974
0.0357 0.1525 180 0.0073 0.9972 0.9948 0.9948 0.9948
0.0147 0.1695 200 0.0105 0.9986 1.0 0.9948 0.9974
0.0271 0.1864 220 0.0075 0.9986 1.0 0.9948 0.9974
0.0071 0.2034 240 0.0073 0.9986 1.0 0.9948 0.9974
0.009 0.2203 260 0.0021 1.0 1.0 1.0 1.0
0.0288 0.2373 280 0.0015 1.0 1.0 1.0 1.0
0.0236 0.2542 300 0.0011 1.0 1.0 1.0 1.0
0.0053 0.2712 320 0.0008 1.0 1.0 1.0 1.0
0.0028 0.2881 340 0.0004 1.0 1.0 1.0 1.0
0.015 0.3051 360 0.0004 1.0 1.0 1.0 1.0
0.0446 0.3220 380 0.0006 1.0 1.0 1.0 1.0
0.0261 0.3390 400 0.0003 1.0 1.0 1.0 1.0
0.0032 0.3559 420 0.0002 1.0 1.0 1.0 1.0
0.0413 0.3729 440 0.0002 1.0 1.0 1.0 1.0
0.0189 0.3898 460 0.0004 1.0 1.0 1.0 1.0
0.003 0.4068 480 0.0002 1.0 1.0 1.0 1.0
0.0071 0.4237 500 0.0004 1.0 1.0 1.0 1.0
0.0139 0.4407 520 0.0005 1.0 1.0 1.0 1.0
0.0161 0.4576 540 0.0003 1.0 1.0 1.0 1.0
0.0027 0.4746 560 0.0002 1.0 1.0 1.0 1.0
0.0039 0.4915 580 0.0003 1.0 1.0 1.0 1.0
0.0067 0.5085 600 0.0001 1.0 1.0 1.0 1.0
0.012 0.5254 620 0.0001 1.0 1.0 1.0 1.0
0.006 0.5424 640 0.0001 1.0 1.0 1.0 1.0
0.0025 0.5593 660 0.0001 1.0 1.0 1.0 1.0
0.0055 0.5763 680 0.0001 1.0 1.0 1.0 1.0
0.0116 0.5932 700 0.0001 1.0 1.0 1.0 1.0
0.014 0.6102 720 0.0001 1.0 1.0 1.0 1.0
0.0042 0.6271 740 0.0001 1.0 1.0 1.0 1.0
0.0418 0.6441 760 0.0003 1.0 1.0 1.0 1.0
0.0024 0.6610 780 0.0002 1.0 1.0 1.0 1.0
0.0039 0.6780 800 0.0002 1.0 1.0 1.0 1.0
0.0048 0.6949 820 0.0001 1.0 1.0 1.0 1.0
0.0007 0.7119 840 0.0001 1.0 1.0 1.0 1.0
0.0014 0.7288 860 0.0001 1.0 1.0 1.0 1.0
0.0056 0.7458 880 0.0001 1.0 1.0 1.0 1.0
0.0107 0.7627 900 0.0001 1.0 1.0 1.0 1.0
0.0027 0.7797 920 0.0001 1.0 1.0 1.0 1.0
0.0105 0.7966 940 0.0001 1.0 1.0 1.0 1.0
0.0157 0.8136 960 0.0001 1.0 1.0 1.0 1.0
0.0082 0.8305 980 0.0001 1.0 1.0 1.0 1.0
0.0084 0.8475 1000 0.0001 1.0 1.0 1.0 1.0
0.0182 0.8644 1020 0.0001 1.0 1.0 1.0 1.0
0.0053 0.8814 1040 0.0001 1.0 1.0 1.0 1.0
0.0087 0.8983 1060 0.0001 1.0 1.0 1.0 1.0
0.0017 0.9153 1080 0.0001 1.0 1.0 1.0 1.0
0.0058 0.9322 1100 0.0001 1.0 1.0 1.0 1.0
0.0015 0.9492 1120 0.0001 1.0 1.0 1.0 1.0
0.0059 0.9661 1140 0.0001 1.0 1.0 1.0 1.0
0.0069 0.9831 1160 0.0001 1.0 1.0 1.0 1.0
0.0058 1.0 1180 0.0001 1.0 1.0 1.0 1.0

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mtzig/v3_mistral_lora

Adapter
(20)
this model