v1_mistral_lora_real

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0002
  • Accuracy: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.7125 0.0071 10 0.5957 0.6805 0.5472 0.6915 0.6110
0.7473 0.0143 20 0.5921 0.6931 0.5622 0.6965 0.6222
0.6843 0.0214 30 0.5800 0.7094 0.5855 0.6816 0.6299
0.7083 0.0285 40 0.5597 0.7401 0.6432 0.6368 0.64
0.6862 0.0357 50 0.5293 0.7780 0.7216 0.6318 0.6737
0.626 0.0428 60 0.4788 0.8267 0.8107 0.6816 0.7405
0.4406 0.0499 70 0.4027 0.8917 0.8653 0.8308 0.8477
0.46 0.0571 80 0.2929 0.9386 0.9154 0.9154 0.9154
0.3254 0.0642 90 0.1629 0.9819 0.9848 0.9652 0.9749
0.2359 0.0714 100 0.0554 0.9982 0.9950 1.0 0.9975
0.263 0.0785 110 0.0200 1.0 1.0 1.0 1.0
0.228 0.0856 120 0.0094 1.0 1.0 1.0 1.0
0.2553 0.0928 130 0.0114 1.0 1.0 1.0 1.0
0.1633 0.0999 140 0.0083 1.0 1.0 1.0 1.0
0.145 0.1070 150 0.0087 1.0 1.0 1.0 1.0
0.1409 0.1142 160 0.0041 1.0 1.0 1.0 1.0
0.1955 0.1213 170 0.0042 1.0 1.0 1.0 1.0
0.1628 0.1284 180 0.0036 1.0 1.0 1.0 1.0
0.1454 0.1356 190 0.0019 1.0 1.0 1.0 1.0
0.1311 0.1427 200 0.0044 1.0 1.0 1.0 1.0
0.1937 0.1498 210 0.0035 1.0 1.0 1.0 1.0
0.1059 0.1570 220 0.0020 1.0 1.0 1.0 1.0
0.1352 0.1641 230 0.0023 1.0 1.0 1.0 1.0
0.1491 0.1712 240 0.0019 1.0 1.0 1.0 1.0
0.1245 0.1784 250 0.0012 1.0 1.0 1.0 1.0
0.1354 0.1855 260 0.0012 1.0 1.0 1.0 1.0
0.1177 0.1927 270 0.0012 1.0 1.0 1.0 1.0
0.1424 0.1998 280 0.0008 1.0 1.0 1.0 1.0
0.1343 0.2069 290 0.0008 1.0 1.0 1.0 1.0
0.1567 0.2141 300 0.0010 1.0 1.0 1.0 1.0
0.1094 0.2212 310 0.0009 1.0 1.0 1.0 1.0
0.1537 0.2283 320 0.0006 1.0 1.0 1.0 1.0
0.1344 0.2355 330 0.0006 1.0 1.0 1.0 1.0
0.1286 0.2426 340 0.0006 1.0 1.0 1.0 1.0
0.142 0.2497 350 0.0006 1.0 1.0 1.0 1.0
0.1177 0.2569 360 0.0009 1.0 1.0 1.0 1.0
0.1383 0.2640 370 0.0009 1.0 1.0 1.0 1.0
0.1647 0.2711 380 0.0004 1.0 1.0 1.0 1.0
0.0803 0.2783 390 0.0005 1.0 1.0 1.0 1.0
0.1476 0.2854 400 0.0004 1.0 1.0 1.0 1.0
0.1003 0.2925 410 0.0005 1.0 1.0 1.0 1.0
0.1122 0.2997 420 0.0004 1.0 1.0 1.0 1.0
0.1867 0.3068 430 0.0003 1.0 1.0 1.0 1.0
0.1216 0.3139 440 0.0005 1.0 1.0 1.0 1.0
0.1288 0.3211 450 0.0006 1.0 1.0 1.0 1.0
0.1243 0.3282 460 0.0005 1.0 1.0 1.0 1.0
0.1127 0.3354 470 0.0003 1.0 1.0 1.0 1.0
0.0775 0.3425 480 0.0003 1.0 1.0 1.0 1.0
0.1246 0.3496 490 0.0004 1.0 1.0 1.0 1.0
0.0864 0.3568 500 0.0002 1.0 1.0 1.0 1.0
0.1241 0.3639 510 0.0004 1.0 1.0 1.0 1.0
0.109 0.3710 520 0.0003 1.0 1.0 1.0 1.0
0.1117 0.3782 530 0.0004 1.0 1.0 1.0 1.0
0.1137 0.3853 540 0.0003 1.0 1.0 1.0 1.0
0.1193 0.3924 550 0.0006 1.0 1.0 1.0 1.0
0.1209 0.3996 560 0.0007 1.0 1.0 1.0 1.0
0.0934 0.4067 570 0.0007 1.0 1.0 1.0 1.0
0.1276 0.4138 580 0.0005 1.0 1.0 1.0 1.0
0.0851 0.4210 590 0.0004 1.0 1.0 1.0 1.0
0.1056 0.4281 600 0.0005 1.0 1.0 1.0 1.0
0.0951 0.4352 610 0.0004 1.0 1.0 1.0 1.0
0.1308 0.4424 620 0.0004 1.0 1.0 1.0 1.0
0.0814 0.4495 630 0.0004 1.0 1.0 1.0 1.0
0.0696 0.4567 640 0.0004 1.0 1.0 1.0 1.0
0.0721 0.4638 650 0.0004 1.0 1.0 1.0 1.0
0.0962 0.4709 660 0.0003 1.0 1.0 1.0 1.0
0.0829 0.4781 670 0.0002 1.0 1.0 1.0 1.0
0.1158 0.4852 680 0.0002 1.0 1.0 1.0 1.0
0.0949 0.4923 690 0.0002 1.0 1.0 1.0 1.0
0.1287 0.4995 700 0.0003 1.0 1.0 1.0 1.0
0.0834 0.5066 710 0.0003 1.0 1.0 1.0 1.0
0.099 0.5137 720 0.0003 1.0 1.0 1.0 1.0
0.12 0.5209 730 0.0004 1.0 1.0 1.0 1.0
0.0571 0.5280 740 0.0003 1.0 1.0 1.0 1.0
0.1133 0.5351 750 0.0004 1.0 1.0 1.0 1.0
0.1178 0.5423 760 0.0003 1.0 1.0 1.0 1.0
0.0866 0.5494 770 0.0004 1.0 1.0 1.0 1.0
0.0964 0.5565 780 0.0003 1.0 1.0 1.0 1.0
0.1165 0.5637 790 0.0004 1.0 1.0 1.0 1.0
0.1174 0.5708 800 0.0003 1.0 1.0 1.0 1.0
0.1468 0.5780 810 0.0002 1.0 1.0 1.0 1.0
0.1128 0.5851 820 0.0004 1.0 1.0 1.0 1.0
0.1446 0.5922 830 0.0003 1.0 1.0 1.0 1.0
0.0961 0.5994 840 0.0003 1.0 1.0 1.0 1.0
0.0736 0.6065 850 0.0002 1.0 1.0 1.0 1.0
0.0847 0.6136 860 0.0002 1.0 1.0 1.0 1.0
0.139 0.6208 870 0.0003 1.0 1.0 1.0 1.0
0.0775 0.6279 880 0.0003 1.0 1.0 1.0 1.0
0.0916 0.6350 890 0.0003 1.0 1.0 1.0 1.0
0.0944 0.6422 900 0.0002 1.0 1.0 1.0 1.0
0.1242 0.6493 910 0.0002 1.0 1.0 1.0 1.0
0.0975 0.6564 920 0.0002 1.0 1.0 1.0 1.0
0.0896 0.6636 930 0.0002 1.0 1.0 1.0 1.0
0.1359 0.6707 940 0.0002 1.0 1.0 1.0 1.0
0.0905 0.6778 950 0.0003 1.0 1.0 1.0 1.0
0.1045 0.6850 960 0.0002 1.0 1.0 1.0 1.0
0.0806 0.6921 970 0.0002 1.0 1.0 1.0 1.0
0.1121 0.6993 980 0.0002 1.0 1.0 1.0 1.0
0.1184 0.7064 990 0.0002 1.0 1.0 1.0 1.0
0.0945 0.7135 1000 0.0002 1.0 1.0 1.0 1.0
0.1041 0.7207 1010 0.0002 1.0 1.0 1.0 1.0
0.0912 0.7278 1020 0.0002 1.0 1.0 1.0 1.0
0.1167 0.7349 1030 0.0002 1.0 1.0 1.0 1.0
0.0952 0.7421 1040 0.0002 1.0 1.0 1.0 1.0
0.1048 0.7492 1050 0.0002 1.0 1.0 1.0 1.0
0.0877 0.7563 1060 0.0002 1.0 1.0 1.0 1.0
0.1051 0.7635 1070 0.0002 1.0 1.0 1.0 1.0
0.1027 0.7706 1080 0.0002 1.0 1.0 1.0 1.0
0.0802 0.7777 1090 0.0002 1.0 1.0 1.0 1.0
0.1118 0.7849 1100 0.0002 1.0 1.0 1.0 1.0
0.109 0.7920 1110 0.0002 1.0 1.0 1.0 1.0
0.097 0.7991 1120 0.0002 1.0 1.0 1.0 1.0
0.1045 0.8063 1130 0.0002 1.0 1.0 1.0 1.0
0.0872 0.8134 1140 0.0002 1.0 1.0 1.0 1.0
0.1075 0.8205 1150 0.0002 1.0 1.0 1.0 1.0
0.1322 0.8277 1160 0.0002 1.0 1.0 1.0 1.0
0.1056 0.8348 1170 0.0002 1.0 1.0 1.0 1.0
0.0884 0.8420 1180 0.0002 1.0 1.0 1.0 1.0
0.1284 0.8491 1190 0.0002 1.0 1.0 1.0 1.0
0.1099 0.8562 1200 0.0002 1.0 1.0 1.0 1.0
0.1023 0.8634 1210 0.0002 1.0 1.0 1.0 1.0
0.086 0.8705 1220 0.0002 1.0 1.0 1.0 1.0
0.0877 0.8776 1230 0.0002 1.0 1.0 1.0 1.0
0.1032 0.8848 1240 0.0002 1.0 1.0 1.0 1.0
0.1446 0.8919 1250 0.0002 1.0 1.0 1.0 1.0
0.1079 0.8990 1260 0.0002 1.0 1.0 1.0 1.0
0.0716 0.9062 1270 0.0002 1.0 1.0 1.0 1.0
0.1181 0.9133 1280 0.0002 1.0 1.0 1.0 1.0
0.1087 0.9204 1290 0.0002 1.0 1.0 1.0 1.0
0.086 0.9276 1300 0.0002 1.0 1.0 1.0 1.0
0.071 0.9347 1310 0.0002 1.0 1.0 1.0 1.0
0.0858 0.9418 1320 0.0002 1.0 1.0 1.0 1.0
0.0859 0.9490 1330 0.0002 1.0 1.0 1.0 1.0
0.1165 0.9561 1340 0.0002 1.0 1.0 1.0 1.0
0.1189 0.9633 1350 0.0002 1.0 1.0 1.0 1.0
0.142 0.9704 1360 0.0002 1.0 1.0 1.0 1.0
0.1336 0.9775 1370 0.0002 1.0 1.0 1.0 1.0
0.1183 0.9847 1380 0.0002 1.0 1.0 1.0 1.0
0.0961 0.9918 1390 0.0002 1.0 1.0 1.0 1.0
0.076 0.9989 1400 0.0002 1.0 1.0 1.0 1.0

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mtzig/v1_mistral_lora_real

Adapter
(20)
this model