v1_mistral_lora

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2947
  • Accuracy: 0.8899
  • Precision: 0.8933
  • Recall: 0.7910
  • F1: 0.8391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0 0 0.6321 0.6480 0.5125 0.6119 0.5578
0.6598 0.0153 20 0.6284 0.6552 0.5221 0.5871 0.5527
0.6948 0.0306 40 0.6222 0.6787 0.5742 0.4428 0.5
0.6394 0.0459 60 0.6187 0.6877 0.6228 0.3532 0.4508
0.6466 0.0612 80 0.5946 0.7148 0.6257 0.5323 0.5753
0.5551 0.0765 100 0.5566 0.7256 0.6140 0.6567 0.6346
0.5631 0.0918 120 0.4903 0.7924 0.75 0.6418 0.6917
0.5009 0.1072 140 0.4552 0.7978 0.7432 0.6766 0.7083
0.4532 0.1225 160 0.4340 0.8267 0.8344 0.6517 0.7318
0.3813 0.1378 180 0.4414 0.8285 0.8630 0.6269 0.7262
0.3897 0.1531 200 0.4202 0.8394 0.8784 0.6468 0.7450
0.427 0.1684 220 0.4066 0.8430 0.8654 0.6716 0.7563
0.346 0.1837 240 0.4156 0.8339 0.7685 0.7761 0.7723
0.3623 0.1990 260 0.4000 0.8502 0.8734 0.6866 0.7688
0.3446 0.2143 280 0.3941 0.8520 0.8650 0.7015 0.7747
0.2533 0.2296 300 0.3808 0.8556 0.8954 0.6816 0.7740
0.3451 0.2449 320 0.3897 0.8357 0.7895 0.7463 0.7673
0.3667 0.2602 340 0.3895 0.8375 0.7761 0.7761 0.7761
0.3378 0.2755 360 0.3691 0.8592 0.8773 0.7114 0.7857
0.3216 0.2909 380 0.3751 0.8394 0.7947 0.7512 0.7724
0.3109 0.3062 400 0.3736 0.8538 0.8093 0.7811 0.7949
0.2893 0.3215 420 0.3466 0.8664 0.8802 0.7313 0.7989
0.3635 0.3368 440 0.3490 0.8610 0.8523 0.7463 0.7958
0.3582 0.3521 460 0.3370 0.8718 0.8824 0.7463 0.8086
0.3879 0.3674 480 0.3521 0.8556 0.7980 0.8060 0.8020
0.3741 0.3827 500 0.3298 0.8682 0.8810 0.7363 0.8022
0.3291 0.3980 520 0.3347 0.8628 0.8743 0.7264 0.7935
0.3697 0.4133 540 0.3236 0.8682 0.8636 0.7562 0.8064
0.3143 0.4286 560 0.3294 0.8628 0.8571 0.7463 0.7979
0.2442 0.4439 580 0.3167 0.8700 0.8909 0.7313 0.8033
0.361 0.4592 600 0.3247 0.8664 0.8360 0.7861 0.8103
0.3877 0.4746 620 0.3325 0.8700 0.8342 0.8010 0.8173
0.2342 0.4899 640 0.3178 0.8736 0.8659 0.7711 0.8158
0.2483 0.5052 660 0.3146 0.8718 0.8963 0.7313 0.8055
0.2841 0.5205 680 0.3226 0.8718 0.9167 0.7114 0.8011
0.3065 0.5358 700 0.3122 0.8845 0.9363 0.7313 0.8212
0.2231 0.5511 720 0.3075 0.8809 0.8689 0.7910 0.8281
0.2701 0.5664 740 0.3041 0.8809 0.8814 0.7761 0.8254
0.263 0.5817 760 0.3054 0.8773 0.8674 0.7811 0.8220
0.3769 0.5970 780 0.3036 0.8755 0.8708 0.7711 0.8179
0.184 0.6123 800 0.3055 0.8755 0.8511 0.7960 0.8226
0.3339 0.6276 820 0.3079 0.8773 0.8482 0.8060 0.8265
0.2078 0.6429 840 0.3000 0.8827 0.8736 0.7910 0.8303
0.3542 0.6582 860 0.3014 0.8827 0.8778 0.7861 0.8294
0.2316 0.6736 880 0.3074 0.8755 0.8587 0.7861 0.8208
0.2983 0.6889 900 0.3038 0.8809 0.8771 0.7811 0.8263
0.3039 0.7042 920 0.3024 0.8845 0.8870 0.7811 0.8307
0.311 0.7195 940 0.3016 0.8827 0.8820 0.7811 0.8285
0.406 0.7348 960 0.3040 0.8827 0.8617 0.8060 0.8329
0.2306 0.7501 980 0.2975 0.8863 0.9059 0.7662 0.8302
0.3494 0.7654 1000 0.3009 0.8863 0.875 0.8010 0.8364
0.3237 0.7807 1020 0.3034 0.8899 0.8723 0.8159 0.8432
0.4034 0.7960 1040 0.2988 0.8899 0.8977 0.7861 0.8382
0.2682 0.8113 1060 0.3001 0.8845 0.8663 0.8060 0.8351
0.2921 0.8266 1080 0.2982 0.8845 0.8785 0.7910 0.8325
0.3732 0.8419 1100 0.3003 0.8791 0.8564 0.8010 0.8278
0.324 0.8573 1120 0.2997 0.8845 0.8743 0.7960 0.8333
0.3607 0.8726 1140 0.2987 0.8827 0.8736 0.7910 0.8303
0.2201 0.8879 1160 0.2960 0.8881 0.8883 0.7910 0.8368
0.2767 0.9032 1180 0.2949 0.8899 0.8933 0.7910 0.8391
0.2563 0.9185 1200 0.2939 0.8899 0.8933 0.7910 0.8391
0.2681 0.9338 1220 0.2956 0.8899 0.8933 0.7910 0.8391
0.3409 0.9491 1240 0.2950 0.8881 0.8883 0.7910 0.8368
0.3316 0.9644 1260 0.2939 0.8899 0.8933 0.7910 0.8391
0.1957 0.9797 1280 0.2946 0.8899 0.8933 0.7910 0.8391
0.2439 0.9950 1300 0.2947 0.8899 0.8933 0.7910 0.8391

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mtzig/v1_mistral_lora

Adapter
(20)
this model