Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true


eval_sample_packing: False #Poco dato

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: data.json # or json
    ds_type: json # see other options below
    type: completion

dataset_prepared_path:
val_set_size: 0.05
# output_dir: ./lora-out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

# adapter: lora
# lora_model_dir:
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./tinyllama-out
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 8 #2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false #TODO: change to true
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

save_strategy: "no"

warmup_steps: 10
evals_per_epoch: 4
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

tinyllama-out

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss
1.9894 0.13 1 1.5790
1.915 0.26 2 1.4849
1.642 0.52 4 1.4032
1.5396 0.77 6 1.4059
1.3746 1.03 8 1.4101
0.9355 1.23 10 1.5147
0.9266 1.48 12 1.5291
0.8006 1.74 14 1.4724
0.7664 2.0 16 1.4965
0.4813 2.16 18 1.5715
0.4193 2.42 20 1.5436
0.364 2.68 22 1.6040
0.3592 2.94 24 1.5823
0.1884 3.13 26 1.6850
0.159 3.39 28 1.8316
0.1641 3.65 30 1.7286
0.1512 3.9 32 1.7029
0.1563 4.06 34 1.7033
0.0696 4.32 36 1.7482
0.0643 4.58 38 1.8069
0.0662 4.84 40 1.8410
0.0709 5.1 42 1.8529
0.0344 5.26 44 1.8626
0.0468 5.52 46 1.8716
0.0328 5.77 48 1.8761
0.0353 6.03 50 1.8789
0.0375 6.23 52 1.8803
0.0345 6.48 54 1.8802
0.0346 6.74 56 1.8806

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
16
GGUF
Model size
1.1B params
Architecture
llama

16-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for msaavedra1234/tiny_t

Quantized
(73)
this model