Edit model card

LIMSTRAL πŸ‡²πŸ‹

limstral logo

Mistral 7B fine-tuned on LIMA

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the LIMA dataset for instruction following downstream task.

Training procedure

The model was loaded on 8 bits and fine-tuned on the LIMA dataset using the LoRA PEFT technique with the huggingface/peft library and trl/sft for 2 epochs on 1 x A100 (40GB) GPU.

SFT Trainer params:

trainer = SFTTrainer(
    model=model,
    train_dataset=train_ds,
    eval_dataset=test_ds,
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=2048,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=False
)

LoRA config:

config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.1,
        r=64,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj']
    )

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 66
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Step Training Loss Validation Loss
5 1.802800 1.848371
10 1.605800 1.803416
15 1.844800 1.762276
20 1.752600 1.754042
25 1.512400 1.750550

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

repo_id = "mrm8488/limstral-7B-v0.1"

model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(repo_id)

gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)

instruction = "[INST] Write an email to say goodbye to me boss [\INST]"
res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2)
print(res[0]['generated_text'])

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
981
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrm8488/limstral-7B-v0.1

Quantizations
1 model

Dataset used to train mrm8488/limstral-7B-v0.1