See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 958d1701b8a27f62_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/958d1701b8a27f62_train_data.json
type:
field_input: Tags
field_instruction: Title
field_output: Predicted_Tags
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 141
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/b4ab149c-1bc1-4a88-bb81-d8ea0279e8b8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 141
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 32
mlflow_experiment_name: /tmp/958d1701b8a27f62_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint:
s2_attention: null
sample_packing: false
save_steps: 141
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: e3ad808f-bad5-42bb-a274-f81c32f38e91
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e3ad808f-bad5-42bb-a274-f81c32f38e91
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
b4ab149c-1bc1-4a88-bb81-d8ea0279e8b8
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 3.8362 |
1.5376 | 0.0428 | 141 | 0.7935 |
0.7066 | 0.0856 | 282 | 0.6471 |
0.6019 | 0.1284 | 423 | 0.5800 |
0.5643 | 0.1712 | 564 | 0.5551 |
0.5421 | 0.2141 | 705 | 0.5317 |
0.5172 | 0.2569 | 846 | 0.5192 |
0.515 | 0.2997 | 987 | 0.5122 |
0.5095 | 0.3425 | 1128 | 0.4982 |
0.4985 | 0.3853 | 1269 | 0.4995 |
0.4906 | 0.4281 | 1410 | 0.4858 |
0.4871 | 0.4709 | 1551 | 0.4803 |
0.4781 | 0.5137 | 1692 | 0.4793 |
0.4819 | 0.5566 | 1833 | 0.4732 |
0.4755 | 0.5994 | 1974 | 0.4731 |
0.4765 | 0.6422 | 2115 | 0.4681 |
0.4682 | 0.6850 | 2256 | 0.4665 |
0.4688 | 0.7278 | 2397 | 0.4600 |
0.4628 | 0.7706 | 2538 | 0.4619 |
0.4569 | 0.8134 | 2679 | 0.4605 |
0.4586 | 0.8562 | 2820 | 0.4627 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/b4ab149c-1bc1-4a88-bb81-d8ea0279e8b8
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-1.5B-Instruct