See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 26e357e10ca56cb1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/26e357e10ca56cb1_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/73404e5a-0e16-4392-897f-478526658a46
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/26e357e10ca56cb1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f2373d9f-8e95-4acb-8856-941411fbcc10
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f2373d9f-8e95-4acb-8856-941411fbcc10
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
73404e5a-0e16-4392-897f-478526658a46
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6609
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4987 | 0.0002 | 1 | 2.7995 |
2.3503 | 0.0016 | 10 | 2.4840 |
2.0748 | 0.0033 | 20 | 2.2137 |
1.8103 | 0.0049 | 30 | 2.0079 |
2.0097 | 0.0065 | 40 | 1.8863 |
1.868 | 0.0081 | 50 | 1.8088 |
1.6384 | 0.0098 | 60 | 1.7546 |
1.7302 | 0.0114 | 70 | 1.7126 |
1.715 | 0.0130 | 80 | 1.6765 |
1.6301 | 0.0146 | 90 | 1.6636 |
1.4097 | 0.0163 | 100 | 1.6609 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/73404e5a-0e16-4392-897f-478526658a46
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-1.5B-Instruct