See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: NousResearch/Hermes-2-Pro-Mistral-7B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 45111e02370473e3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/45111e02370473e3_train_data.json
type:
field_instruction: text
field_output: completion_a
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 101
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 3
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/51b1678a-64da-4fee-884f-f437b58d8901
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 101
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 6
mlflow_experiment_name: /tmp/45111e02370473e3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 101
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .05000000
wandb_entity: null
wandb_mode:
wandb_name: f8ea3310-4a2d-43f6-8630-c66c0845852e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f8ea3310-4a2d-43f6-8630-c66c0845852e
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
51b1678a-64da-4fee-884f-f437b58d8901
This model is a fine-tuned version of NousResearch/Hermes-2-Pro-Mistral-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 18
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0018 | 1 | 1.0119 |
2.4041 | 0.1865 | 101 | 0.7690 |
2.2818 | 0.3729 | 202 | 0.7643 |
2.2423 | 0.5594 | 303 | 0.7603 |
2.2559 | 0.7458 | 404 | 0.7696 |
2.2786 | 0.9323 | 505 | 0.7705 |
1.7935 | 1.1188 | 606 | 0.8173 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/51b1678a-64da-4fee-884f-f437b58d8901
Base model
mistralai/Mistral-7B-v0.1
Finetuned
NousResearch/Hermes-2-Pro-Mistral-7B