See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 8eaf7cf861deb379_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8eaf7cf861deb379_train_data.json
type:
field_input: text
field_instruction: task_name
field_output: hypothesis
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/0d7c08d0-9e7d-400d-b70b-d9832ff1dbdf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/8eaf7cf861deb379_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f34d333f-e049-460b-a070-a1fa68d1d75f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f34d333f-e049-460b-a070-a1fa68d1d75f
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
0d7c08d0-9e7d-400d-b70b-d9832ff1dbdf
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 787
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 3.8328 |
No log | 0.0079 | 40 | 3.5142 |
No log | 0.0159 | 80 | 1.4397 |
2.7573 | 0.0238 | 120 | 0.6016 |
2.7573 | 0.0317 | 160 | 0.4583 |
0.5028 | 0.0397 | 200 | 0.3681 |
0.5028 | 0.0476 | 240 | 0.3420 |
0.5028 | 0.0555 | 280 | 0.3023 |
0.3954 | 0.0635 | 320 | 0.2768 |
0.3954 | 0.0714 | 360 | 0.2611 |
0.275 | 0.0793 | 400 | 0.2508 |
0.275 | 0.0873 | 440 | 0.2619 |
0.275 | 0.0952 | 480 | 0.2413 |
0.2865 | 0.1031 | 520 | 0.2968 |
0.2865 | 0.1111 | 560 | 0.2355 |
0.218 | 0.1190 | 600 | 0.2365 |
0.218 | 0.1269 | 640 | 0.2255 |
0.218 | 0.1349 | 680 | 0.2346 |
0.237 | 0.1428 | 720 | 0.2166 |
0.237 | 0.1507 | 760 | 0.2225 |
0.2618 | 0.1587 | 800 | 0.2223 |
0.2618 | 0.1666 | 840 | 0.2471 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/0d7c08d0-9e7d-400d-b70b-d9832ff1dbdf
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-1.5B-Instruct