Asteroid model mpariente/DPRNNTasNet-ks2_WHAM_sepclean

Imported from Zenodo

Description:

This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.

Training config:

data:
    mode: min
    nondefault_nsrc: None
    sample_rate: 8000
    segment: 2.0
    task: sep_clean
    train_dir: data/wav8k/min/tr
    valid_dir: data/wav8k/min/cv
filterbank:
    kernel_size: 2
    n_filters: 64
    stride: 1
main_args:
    exp_dir: exp/train_dprnn_new/
    gpus: -1
    help: None
masknet:
    bidirectional: True
    bn_chan: 128
    chunk_size: 250
    dropout: 0
    hid_size: 128
    hop_size: 125
    in_chan: 64
    mask_act: sigmoid
    n_repeats: 6
    n_src: 2
    out_chan: 64
optim:
    lr: 0.001
    optimizer: adam
    weight_decay: 1e-05
positional arguments:
training:
    batch_size: 3
    early_stop: True
    epochs: 200
    gradient_clipping: 5
    half_lr: True
    num_workers: 8

Results:

si_sdr: 19.316743490695334
si_sdr_imp: 19.317895273889842
sdr: 19.68085347190952
sdr_imp: 19.5298092932871
sir: 30.362213998701232
sir_imp: 30.21116982007881
sar: 20.15553251343315
sar_imp: -129.02091762351188
stoi: 0.97772664309074
stoi_imp: 0.23968091518217424

License notice:

This work "DPRNNTasNet-ks2_WHAM_sepclean" is a derivative of CSR-I (WSJ0) Complete by LDC, used under LDC User Agreement for Non-Members (Research only). "DPRNNTasNet-ks2_WHAM_sepclean" is licensed under Attribution-ShareAlike 3.0 Unported by Manuel Pariente.

Downloads last month
380
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using mpariente/DPRNNTasNet-ks2_WHAM_sepclean 1