Visualize in Weights & Biases

segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0107
  • Mean Iou: 0.8767
  • Precision: 0.9236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.0061 0.9935 114 0.0077 0.7881 0.8686
0.0043 1.9956 229 0.0063 0.8084 0.8541
0.0051 2.9978 344 0.0052 0.8338 0.9445
0.0141 4.0 459 0.0054 0.8421 0.8811
0.0043 4.9935 573 0.0052 0.8414 0.9099
0.0027 5.9956 688 0.0057 0.8450 0.8967
0.0054 6.9978 803 0.0052 0.8505 0.9364
0.0024 8.0 918 0.0064 0.8408 0.9001
0.0024 8.9935 1032 0.0068 0.8378 0.9158
0.0033 9.9956 1147 0.0055 0.8643 0.9156
0.0014 10.9978 1262 0.0055 0.8611 0.9048
0.0019 12.0 1377 0.0070 0.8410 0.8900
0.0025 12.9935 1491 0.0060 0.8629 0.9112
0.0018 13.9956 1606 0.0063 0.8577 0.9294
0.002 14.9978 1721 0.0063 0.8539 0.8888
0.002 16.0 1836 0.0072 0.8598 0.9172
0.0021 16.9935 1950 0.0062 0.8555 0.9074
0.0018 17.9956 2065 0.0069 0.8598 0.9167
0.0018 18.9978 2180 0.0074 0.8556 0.9160
0.002 20.0 2295 0.0067 0.8662 0.9117
0.003 20.9935 2409 0.0062 0.8724 0.9245
0.0027 21.9956 2524 0.0067 0.8727 0.9124
0.0013 22.9978 2639 0.0068 0.8684 0.9147
0.0011 24.0 2754 0.0070 0.8723 0.9165
0.0014 24.9935 2868 0.0074 0.8709 0.9257
0.0011 25.9956 2983 0.0075 0.8697 0.9139
0.001 26.9978 3098 0.0071 0.8780 0.9273
0.0011 28.0 3213 0.0075 0.8743 0.9182
0.0008 28.9935 3327 0.0080 0.8744 0.9234
0.0007 29.9956 3442 0.0086 0.8692 0.9205
0.001 30.9978 3557 0.0083 0.8720 0.9145
0.0009 32.0 3672 0.0084 0.8745 0.9167
0.0009 32.9935 3786 0.0084 0.8717 0.9155
0.0011 33.9956 3901 0.0084 0.8756 0.9279
0.0007 34.9978 4016 0.0090 0.8777 0.9233
0.0008 36.0 4131 0.0090 0.8744 0.9173
0.0011 36.9935 4245 0.0097 0.8753 0.9192
0.0008 37.9956 4360 0.0091 0.8757 0.9260
0.0009 38.9978 4475 0.0091 0.8739 0.9173
0.0008 40.0 4590 0.0103 0.8760 0.9274
0.0008 40.9935 4704 0.0106 0.8749 0.9263
0.0008 41.9956 4819 0.0097 0.8753 0.9238
0.0009 42.9978 4934 0.0099 0.8730 0.9159
0.0006 44.0 5049 0.0101 0.8757 0.9247
0.0006 44.9935 5163 0.0104 0.8756 0.9217
0.0007 45.9956 5278 0.0106 0.8720 0.9175
0.0006 46.9978 5393 0.0107 0.8753 0.9202
0.0005 48.0 5508 0.0107 0.8757 0.9224
0.0007 48.9935 5622 0.0107 0.8764 0.9227
0.0008 49.6732 5700 0.0107 0.8767 0.9236

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mouadenna/segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch

Finetuned
(18)
this model