SmolLCoder-360M-Instruct
Introduction
SmolLCoder-360M-Instruct is a small & fast coding assistant.
Quickstart
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"motexture/SmolLCoder-360M-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("motexture/SmolLCoder-360M-Instruct")
prompt = "Write a C++ program that prints Hello World!"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096,
do_sample=True,
temperature=0.3
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
License
Citation
@misc{allal2024SmolLM2,
title={SmolLM2 - with great data, comes great performance},
author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
year={2024},
}
- Downloads last month
- 27
Model tree for motexture/SmolLCoder-360M-Instruct
Base model
HuggingFaceTB/SmolLM2-360M-Instruct