A newer version of this model is available: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
/**
 * Key to config.json file.
 */
key:          string;
etag:         string;
lastModified: Date;
size:         number;
modelId:      ModelId;
author?:      AuthorId;
siblings:     IS3ObjectWRelativeFilename[];
config:       Obj;
configTxt?:   string;  /// if flag is set when fetching.
downloads?:   number;  /// if flag is set when fetching.
naturalIdx:   number;
cardSource?:  Source;
cardData?:    Obj;

constructor(o: Partial<ModelInfo>) {
    return Object.assign(this, o);
}

get jsonUrl(): string {
    return Bucket.R.models.urlForKey(this.key);
}

get cdnJsonUrl(): string {
    return Bucket.R.models.cdnUrlForKey(this.key);
}

async validate(): Promise<Ajv.ErrorObject[] | undefined> {
    const jsonSchema = JSON.parse(
        await fs.promises.readFile(CONFIG_JSON_SCHEMA, 'utf8')
    );
    const ajv = new Ajv();
    ajv.validate(jsonSchema, this.config);
    return ajv.errors ?? undefined;
}

/**
 * Readme key, w. and w/o S3 prefix.
 */
get readmeKey(): string {
    return this.key.replace("config.json", "README.md");
}
get readmeTrimmedKey(): string {
    return Utils.trimPrefix(this.readmeKey, S3_MODELS_PREFIX);
}

/**
 * ["pytorch", "tf", ...]
 */
get mlFrameworks(): string[] {
    return Object.keys(FileType).filter(k => {
        const filename = FileType[k];
        const isExtension = filename.startsWith(".");
        return isExtension 
            ? this.siblings.some(sibling => sibling.rfilename.endsWith(filename))
            : this.siblings.some(sibling => sibling.rfilename === filename);
    });
}
/**
 * What to display in the code sample.
 */
get autoArchitecture(): string {
    const useTF = this.mlFrameworks.includes("tf") && ! this.mlFrameworks.includes("pytorch");
    const arch = this.autoArchType[0];
    return useTF ? `TF${arch}` : arch;
}
get autoArchType(): [string, string | undefined] {
    const architectures = this.config.architectures;
    if (!architectures || architectures.length === 0) {
        return ["AutoModel", undefined];
    }
    const architecture = architectures[0].toString() as string;
    if (architecture.endsWith("ForQuestionAnswering")) {
        return ["AutoModelForQuestionAnswering", "question-answering"];
    }
    else if (architecture.endsWith("ForTokenClassification")) {
        return ["AutoModelForTokenClassification", "token-classification"];
    }
    else if (architecture.endsWith("ForSequenceClassification")) {
        return ["AutoModelForSequenceClassification", "text-classification"];
    }
    else if (architecture.endsWith("ForMultipleChoice")) {
        return ["AutoModelForMultipleChoice", "multiple-choice"];
    }
    else if (architecture.endsWith("ForPreTraining")) {
        return ["AutoModelForPreTraining", "pretraining"];
    }
    else if (architecture.endsWith("ForMaskedLM")) {
        return ["AutoModelForMaskedLM", "masked-lm"];
    }
    else if (architecture.endsWith("ForCausalLM")) {
        return ["AutoModelForCausalLM", "causal-lm"];
    }
    else if (
           architecture.endsWith("ForConditionalGeneration")
        || architecture.endsWith("MTModel")
        || architecture == "EncoderDecoderModel"
    ) {
        return ["AutoModelForSeq2SeqLM", "seq2seq"];
    }
    else if (architecture.includes("LMHead")) {
        return ["AutoModelWithLMHead", "lm-head"];
    }
    else if (architecture.endsWith("Model")) {
        return ["AutoModel", undefined];
    }
    else {
        return [architecture, undefined];
    }
}
/**
 * All tags
 */
get tags(): string[] {
    const x = [
        ...this.mlFrameworks,
    ];
    if (this.config.model_type) {
        x.push(this.config.model_type);
    }
    const arch = this.autoArchType[1];
    if (arch) {
        x.push(arch);
    }
    if (arch === "lm-head" && this.config.model_type) {
        if ([
            "t5",
            "bart",
            "marian",
        ].includes(this.config.model_type)) {
            x.push("seq2seq");
        }
        else if ([
            "gpt2",
            "ctrl",
            "openai-gpt",
            "xlnet",
            "transfo-xl",
            "reformer",
        ].includes(this.config.model_type)) {
            x.push("causal-lm");
        }
        else {
            x.push("masked-lm");
        }
    }
    x.push(
        ...this.languages() ?? []
    );
    x.push(
        ...this.datasets().map(k => `dataset:${k}`)
    );
    for (let [k, v] of Object.entries(this.cardData ?? {})) {
        if (!['tags', 'license'].includes(k)) {
            /// ^^ whitelist of other accepted keys
            continue;
        }
        if (typeof v === 'string') {
            v = [ v ];
        } else if (Utils.isStrArray(v)) {
            /// ok
        } else {
            c.error(`Invalid ${k} tag type`, v);
            c.debug(this.modelId);
            continue;
        }
        if (k === 'license') {
            x.push(...v.map(x => `license:${x.toLowerCase()}`));
        } else {
            x.push(...v);
        }
    }
    if (this.config.task_specific_params) {
        const keys = Object.keys(this.config.task_specific_params);
        for (const key of keys) {
            x.push(`pipeline:${key}`);
        }
    }
    const explicit_ptag = this.cardData?.pipeline_tag;
    if (explicit_ptag) {
        if (typeof explicit_ptag === 'string') {
            x.push(`pipeline_tag:${explicit_ptag}`);
        } else {
            x.push(`pipeline_tag:invalid`);
        }
    }
    return [...new Set(x)];
}

get pipeline_tag(): (keyof typeof PipelineType) | undefined {
    if (isBlacklisted(this.modelId) || this.cardData?.inference === false) {
        return undefined;
    }
    
    const explicit_ptag = this.cardData?.pipeline_tag;
    if (explicit_ptag) {
        if (typeof explicit_ptag == 'string') {
            return explicit_ptag as keyof typeof PipelineType;
        } else {
            c.error(`Invalid explicit pipeline_tag`, explicit_ptag);
            return undefined;
        }
    }
    
    const tags = this.tags;
    /// Special case for translation
    /// Get the first of the explicit tags that matches.
    const EXPLICIT_PREFIX = "pipeline:";
    const explicit_tag = tags.find(x => x.startsWith(EXPLICIT_PREFIX + `translation`));
    if (!!explicit_tag) {
        return "translation";
    }
    /// Otherwise, get the first (most specific) match **from the mapping**.
    for (const ptag of ALL_PIPELINE_TYPES) {
        if (tags.includes(ptag)) {
            return ptag;
        }
    }
    /// Extra mapping
    const mapping = new Map<string, keyof typeof PipelineType>([
        ["seq2seq", "text-generation"],
        ["causal-lm", "text-generation"],
        ["masked-lm", "fill-mask"],
    ]);
    for (const [tag, ptag] of mapping) {
        if (tags.includes(tag)) {
            return ptag;
        }
    }
}

}

Downloads last month
0
Inference Examples
Inference API (serverless) does not yet support flair models for this pipeline type.

Model tree for mooshiponz/lora_model

Dataset used to train mooshiponz/lora_model