Hindi language model
Trained with ELECTRA base size settings
Tokenization and training CoLab
Example Notebooks
This model outperforms Multilingual BERT on Hindi movie reviews / sentiment analysis (using SimpleTransformers)
You can get higher accuracy using ktrain + TensorFlow, where you can adjust learning rate and other hyperparameters: https://colab.research.google.com/drive/1mSeeSfVSOT7e-dVhPlmSsQRvpn6xC05w?usp=sharing
Question-answering on MLQA dataset: https://colab.research.google.com/drive/1i6fidh2tItf_-IDkljMuaIGmEU6HT2Ar#scrollTo=IcFoAHgKCUiQ
A smaller model (Hindi-BERT) performs better on a BBC news classification task.
Corpus
The corpus is two files:
- Hindi CommonCrawl deduped by OSCAR https://traces1.inria.fr/oscar/
- latest Hindi Wikipedia ( https://dumps.wikimedia.org/hiwiki/ ) + WikiExtractor to txt
Bonus notes:
- Adding English wiki text or parallel corpus could help with cross-lingual tasks and training
Vocabulary
https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing
Bonus notes:
- Created with HuggingFace Tokenizers; you can increase vocabulary size and re-train; remember to change ELECTRA vocab_size
Training
Structure your files, with data-dir named "trainer" here
trainer
- vocab.txt
- pretrain_tfrecords
-- (all .tfrecord... files)
- models
-- modelname
--- checkpoint
--- graph.pbtxt
--- model.*
Conversion
Use this process to convert an in-progress or completed ELECTRA checkpoint to a Transformers-ready model:
git clone https://github.com/huggingface/transformers
python ./transformers/src/transformers/convert_electra_original_tf_checkpoint_to_pytorch.py
--tf_checkpoint_path=./models/checkpointdir
--config_file=config.json
--pytorch_dump_path=pytorch_model.bin
--discriminator_or_generator=discriminator
python
from transformers import TFElectraForPreTraining
model = TFElectraForPreTraining.from_pretrained("./dir_with_pytorch", from_pt=True)
model.save_pretrained("tf")
Once you have formed one directory with config.json, pytorch_model.bin, tf_model.h5, special_tokens_map.json, tokenizer_config.json, and vocab.txt on the same level, run:
transformers-cli upload directory
- Downloads last month
- 29