whisper-medium.en

This model is a fine-tuned version of openai/whisper-medium.en on an acc_dataset_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4242
  • Wer: 0.1293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

See the training notebook here:

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 25
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6045 2.2727 25 0.9047 0.1535
0.2267 4.5455 50 0.4149 0.1262
0.0207 6.8182 75 0.4454 0.1483
0.0134 9.0909 100 0.4660 0.1388
0.009 11.3636 125 0.4311 0.1462
0.0051 13.6364 150 0.4368 0.1356
0.0018 15.9091 175 0.4294 0.1462
0.0003 18.1818 200 0.4234 0.1356
0.0002 20.4545 225 0.4235 0.1325
0.0002 22.7273 250 0.4239 0.1304
0.0002 25.0 275 0.4240 0.1283
0.0002 27.2727 300 0.4242 0.1293

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
149
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for monadical-labs/whisper-medium.en

Finetuned
(24)
this model

Space using monadical-labs/whisper-medium.en 1