Edit model card

Model Card for mncai/mistral-7b-dpo-v6

Introduction of MindsAndCompany

https://mnc.ai/

We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence).

Model Summary

based mistral-7b, dpo tuned.

Detail

first step ties merge.

models:
  - model: AIDC-ai-business/Marcoroni-7B-v3
    # no parameters necessary for base model
  - model: GreenNode/GreenNodeLM-7B-v1olet # psmathur/orca_mini_v3_13b
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: viethq188/LeoScorpius-7B-Chat-DPO
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
  - model: mncai/mistral-7b-dpo-v5
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: AIDC-ai-business/Marcoroni-7B-v3
parameters:
  normalize: true
  int8_mask: true
dtype: float16

second step dpo.

# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=5,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-6,
    lr_scheduler_type="cosine",
    max_steps=1000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    # peft_config=peft_config,
    beta=0.1,
    max_prompt_length=1024,
    max_length=2048,
)

# Fine-tune model with DPO
dpo_trainer.train()

How to Use

Here give some examples of how to use our model.

from transformers import AutoConfig, AutoModel, AutoTokenizer
import transformers
import torch
hf_model = 'mncai/mistral-7b-dpo-v6' 
message = "<|user|>\n두 개의 ꡬ가 μžˆλŠ”λ° 각각 지름이 1, 2μΌλ•Œ ꡬ의 λΆ€ν”ΌλŠ” λͺ‡λ°° 차이가 λ‚˜μ§€? μ„€λͺ…도 같이 ν•΄μ€˜.\n<|assistant|>\n"

sequences = pipeline(
    message,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=2048,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

Warnings

Currently, the leaderboard is overfitted. It is inevitable because, unlike Kaggle, where there's private scoring followed by the end of the competition, here the scores are continuously open. Even among my models, some received lower scores in internal data evaluations. mncai/agiin-13.6B-v0.1 > mncai/agiin-11.1B-v0.1 > mncai/mistral-7b-dpo-v6. However, on the leaderboard, mncai/mistral-7b-dpo-v6 has the highest score. When choosing a model to use on the open LLM leaderboard, it would be best to evaluate with your own private dataset that is not publicly available.

Detect-Pretrain-Code-Contamination Result Share

use https://github.com/Mihaiii/detect-pretrain-code-contamination

DATASET=truthful_qa python src/run.py --target_model mncai/mistral-7b-dpo-v6  --data $DATASET --output_dir out/$DATASET --ratio_gen 0.4

result < 0.1, %: 0.76

Contact

If you have any questions, please raise an issue or contact us at [email protected]

Downloads last month
1,211
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mncai/mistral-7b-dpo-v6

Spaces using mncai/mistral-7b-dpo-v6 17