Darewin-7B is a merge of the following models using LazyMergekit:
- Intel/neural-chat-7b-v3-3
- openaccess-ai-collective/DPOpenHermes-7B-v2
- fblgit/una-cybertron-7b-v2-bf16
- openchat/openchat-3.5-0106
- OpenPipe/mistral-ft-optimized-1227
- mlabonne/NeuralHermes-2.5-Mistral-7B
𧩠Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: Intel/neural-chat-7b-v3-3
parameters:
density: 0.6
weight: 0.2
- model: openaccess-ai-collective/DPOpenHermes-7B-v2
parameters:
density: 0.6
weight: 0.1
- model: fblgit/una-cybertron-7b-v2-bf16
parameters:
density: 0.6
weight: 0.2
- model: openchat/openchat-3.5-0106
parameters:
density: 0.6
weight: 0.15
- model: OpenPipe/mistral-ft-optimized-1227
parameters:
density: 0.6
weight: 0.25
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
density: 0.6
weight: 0.1
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralDarewin-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.79 |
AI2 Reasoning Challenge (25-Shot) | 70.14 |
HellaSwag (10-Shot) | 86.40 |
MMLU (5-Shot) | 64.85 |
TruthfulQA (0-shot) | 62.92 |
Winogrande (5-shot) | 79.72 |
GSM8k (5-shot) | 66.72 |
- Downloads last month
- 83
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mlabonne/NeuralDarewin-7B
Spaces using mlabonne/NeuralDarewin-7B 6
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard70.140
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard86.400
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.850
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard62.920
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.720
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard66.720