lilt-roBERTa-en-base-sroie
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0348
- Address: {'precision': 0.92, 'recall': 0.9279538904899135, 'f1': 0.9239598278335724, 'number': 347}
- Company: {'precision': 0.9405099150141643, 'recall': 0.9567723342939481, 'f1': 0.9485714285714285, 'number': 347}
- Date: {'precision': 0.9827586206896551, 'recall': 0.9855907780979827, 'f1': 0.9841726618705036, 'number': 347}
- Total: {'precision': 0.9131652661064426, 'recall': 0.9394812680115274, 'f1': 0.9261363636363636, 'number': 347}
- Overall Precision: 0.9389
- Overall Recall: 0.9524
- Overall F1: 0.9456
- Overall Accuracy: 0.9954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Address | Company | Date | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0536 | 6.3291 | 500 | 0.0261 | {'precision': 0.9067796610169492, 'recall': 0.9250720461095101, 'f1': 0.9158345221112697, 'number': 347} | {'precision': 0.9273743016759777, 'recall': 0.9567723342939481, 'f1': 0.9418439716312057, 'number': 347} | {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} | {'precision': 0.883008356545961, 'recall': 0.9135446685878963, 'f1': 0.8980169971671388, 'number': 347} | 0.9246 | 0.9460 | 0.9352 | 0.9949 |
0.0058 | 12.6582 | 1000 | 0.0326 | {'precision': 0.9176136363636364, 'recall': 0.930835734870317, 'f1': 0.9241773962804005, 'number': 347} | {'precision': 0.9323943661971831, 'recall': 0.9538904899135446, 'f1': 0.9430199430199431, 'number': 347} | {'precision': 0.9827586206896551, 'recall': 0.9855907780979827, 'f1': 0.9841726618705036, 'number': 347} | {'precision': 0.8910081743869209, 'recall': 0.9423631123919308, 'f1': 0.9159663865546217, 'number': 347} | 0.9304 | 0.9532 | 0.9416 | 0.9950 |
0.0019 | 18.9873 | 1500 | 0.0348 | {'precision': 0.92, 'recall': 0.9279538904899135, 'f1': 0.9239598278335724, 'number': 347} | {'precision': 0.9405099150141643, 'recall': 0.9567723342939481, 'f1': 0.9485714285714285, 'number': 347} | {'precision': 0.9827586206896551, 'recall': 0.9855907780979827, 'f1': 0.9841726618705036, 'number': 347} | {'precision': 0.9131652661064426, 'recall': 0.9394812680115274, 'f1': 0.9261363636363636, 'number': 347} | 0.9389 | 0.9524 | 0.9456 | 0.9954 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for missdua-07/lilt-roberta-en-base-sroie
Base model
SCUT-DLVCLab/lilt-roberta-en-base