Edit model card

codeparrot-ds

This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.1436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
9.5238 0.2062 10 8.0787
7.1728 0.4124 20 7.0714
6.6796 0.6186 30 6.8378
6.4165 0.8247 40 6.5842
6.1172 1.0309 50 6.3309
5.838 1.2371 60 6.1147
5.6075 1.4433 70 5.9416
5.4355 1.6495 80 5.8080
5.3001 1.8557 90 5.7022
5.1595 2.0619 100 5.6176
5.0118 2.2680 110 5.5504
4.9696 2.4742 120 5.4852
4.8653 2.6804 130 5.4179
4.8474 2.8866 140 5.3556
4.706 3.0928 150 5.3083
4.6329 3.2990 160 5.2737
4.5585 3.5052 170 5.2405
4.5445 3.7113 180 5.2051
4.497 3.9175 190 5.1791
4.4332 4.1237 200 5.1661
4.3867 4.3299 210 5.1535
4.4075 4.5361 220 5.1473
4.4265 4.7423 230 5.1445
4.4294 4.9485 240 5.1436

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mirsiss/codeparrot-ds

Finetuned
(1143)
this model