use the following code to generate image

import os
from diffusers import StableDiffusionPipeline
import torch
import random

prompt="ๅฏ็ˆฑ็š„,้ป„่‰ฒ็š„่€้ผ ,ๅฐ็ฒพ็ต,ๅก้€š"
seed=random.randint(1,2147483647)
print(seed)
pipe = StableDiffusionPipeline.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Anime-Chinese-v0.1",
                                               torch_dtype=torch.float16,)
model_path = "miluELK/Taiyi-sd-pokemon-LoRA-zh-512-v2"

pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")
generator = torch.Generator("cuda").manual_seed(seed)
pipe.safety_checker = lambda images, clip_input: (images, False)
image = pipe(prompt, generator=generator, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("./" + prompt + ".png")
image

LoRA text2image fine-tuning - miluELK/Taiyi-sd-pokemon-LoRA-zh-512-v2

These are LoRA adaption weights for IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Anime-Chinese-v0.1. The weights were fine-tuned on the svjack/pokemon-blip-captions-en-zh dataset. You can find some example images in the following.

img_1 img_2 img_3 img_4

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for miluELK/Taiyi-sd-pokemon-LoRA-zh-512-v2