Edit model card

# Fast-Inference with Ctranslate2

Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.

quantized version of togethercomputer/GPT-JT-6B-v0

pip install hf-hub-ctranslate2>=2.0.6 

Converted on 2023-05-19 using

ct2-transformers-converter --model togethercomputer/GPT-JT-6B-v0 --output_dir /home/michael/tmp-ct2fast-GPT-JT-6B-v0 --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json vocab.json special_tokens_map.json added_tokens.json .gitattributes --quantization float16

Checkpoint compatible to ctranslate2>=3.13.0 and hf-hub-ctranslate2>=2.0.6

  • compute_type=int8_float16 for device="cuda"
  • compute_type=int8 for device="cpu"
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
from transformers import AutoTokenizer

model_name = "michaelfeil/ct2fast-GPT-JT-6B-v0"
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
model = GeneratorCT2fromHfHub(
        # load in int8 on CUDA
        model_name_or_path=model_name, 
        device="cuda",
        compute_type="int8_float16",
        tokenizer=AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v0")
)
outputs = model.generate(
    text=["How do you call a fast Flan-ingo?", "User: How are you doing? Bot:"],
)
print(outputs)

Licence and other remarks:

This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.

Original description

Quick Start

from transformers import pipeline

pipe = pipeline(model='togethercomputer/GPT-JT-6B-v0')

pipe("Where is Zurich? Ans:")
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train michaelfeil/ct2fast-GPT-JT-6B-v0