Using Llama offline with transformers is slow and response is repeating itself

#139
by AyoxRay - opened

Hi
I tried using Llama 3 offline (https://huggingface.co./docs/transformers/installation#fetch-models-and-tokenizers-to-use-offline)
with the following transformers:

But when using "pipeline()" or "model.generate()", it runs for almost an hour and the result to the prompt "hi how are you?" is :

<|im_start|>assistant
hi how are you?<|im_end|>
<|im_start|>user
hi how are you?<|im_end|>
<|im_start|>system
hi how are you?<|im_end|>  (repeating)

Code:

import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch


model_id = "Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id
st.title("ChatGPT-like clone")

pipeline = transformers.pipeline(
        "text-generation",
        model=model_id,
        model_kwargs={"torch_dtype": torch.bfloat16},
        device_map="auto",
    )

if "messages" not in st.session_state:
    st.session_state.messages = []


for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


def llama0(prompt, context):

    messages = [
        {"role": "system", "content": context},
        {"role": "user", "content": prompt},
    ]

    terminators = [
        pipeline.tokenizer.eos_token_id,
        pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]

    outputs = pipeline(
        messages,
        max_new_tokens=256,
        eos_token_id=terminators,
        do_sample=True,
        temperature=0.6,
        top_p=0.9,
    )
    return outputs[0]["generated_text"][-1]


def llama1(prompt, context):
    messages = [
        {"role": "system", "content": context},
        {"role": "user", "content": prompt}
    ]
    input_ids = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)
    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]

    output = model.generate(
        input_ids,
        max_new_tokens=256,
        eos_token_id=terminators,
        do_sample=True,
        temperature=0.6,
        top_p=0.9,
    )
    response = output[0][input_ids.shape[-1]:]
    # response1 = tokenizer.decode(response, skip_special_tokens=True)
    return response


if prompt := st.chat_input("What is up?"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        st.markdown(llama1(prompt, prompt))

Can someone help me?

Sign up or log in to comment