opus-mt-en-es-finetuned-es-to-maq-v2

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-es on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7424
  • Bleu: 7.2893
  • Gen Len: 88.7368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 199 2.3492 2.8829 112.5101
No log 2.0 398 2.0881 4.6067 91.5164
2.6444 3.0 597 1.9612 5.3841 93.9332
2.6444 4.0 796 1.8841 5.7548 90.3476
2.6444 5.0 995 1.8330 6.1233 87.9055
1.9708 6.0 1194 1.7965 6.7074 91.0063
1.9708 7.0 1393 1.7734 6.9091 89.267
1.8266 8.0 1592 1.7564 7.0616 88.6272
1.8266 9.0 1791 1.7456 7.1479 89.2531
1.8266 10.0 1990 1.7424 7.2893 88.7368

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mekjr1/opus-mt-en-es-finetuned-es-to-maq-v2

Finetuned
(21)
this model