metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9166666666666666
swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2235
- Accuracy: 0.9167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 24
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.86 | 3 | 0.5572 | 0.7917 |
No log | 2.0 | 7 | 0.4659 | 0.75 |
0.4694 | 2.86 | 10 | 0.4492 | 0.7917 |
0.4694 | 4.0 | 14 | 0.2875 | 0.875 |
0.4694 | 4.86 | 17 | 0.2463 | 0.875 |
0.3403 | 6.0 | 21 | 0.2235 | 0.9167 |
0.3403 | 6.86 | 24 | 0.2371 | 0.9167 |
0.3403 | 8.0 | 28 | 0.1865 | 0.9167 |
0.2581 | 8.86 | 31 | 0.3179 | 0.8333 |
0.2581 | 10.0 | 35 | 0.2050 | 0.8333 |
0.2581 | 10.86 | 38 | 0.2885 | 0.8333 |
0.192 | 12.0 | 42 | 0.2371 | 0.7917 |
0.192 | 12.86 | 45 | 0.1783 | 0.875 |
0.192 | 14.0 | 49 | 0.1164 | 0.9167 |
0.1479 | 14.86 | 52 | 0.1250 | 0.9167 |
0.1479 | 16.0 | 56 | 0.1491 | 0.875 |
0.1479 | 16.86 | 59 | 0.1409 | 0.875 |
0.1348 | 18.0 | 63 | 0.1192 | 0.9167 |
0.1348 | 18.86 | 66 | 0.1168 | 0.9167 |
0.1461 | 20.0 | 70 | 0.1106 | 0.9167 |
0.1461 | 20.57 | 72 | 0.1101 | 0.9167 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3