mavourin's picture
update model card README.md
65c6ba5
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9166666666666666

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2235
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 24

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 0.5572 0.7917
No log 2.0 7 0.4659 0.75
0.4694 2.86 10 0.4492 0.7917
0.4694 4.0 14 0.2875 0.875
0.4694 4.86 17 0.2463 0.875
0.3403 6.0 21 0.2235 0.9167
0.3403 6.86 24 0.2371 0.9167
0.3403 8.0 28 0.1865 0.9167
0.2581 8.86 31 0.3179 0.8333
0.2581 10.0 35 0.2050 0.8333
0.2581 10.86 38 0.2885 0.8333
0.192 12.0 42 0.2371 0.7917
0.192 12.86 45 0.1783 0.875
0.192 14.0 49 0.1164 0.9167
0.1479 14.86 52 0.1250 0.9167
0.1479 16.0 56 0.1491 0.875
0.1479 16.86 59 0.1409 0.875
0.1348 18.0 63 0.1192 0.9167
0.1348 18.86 66 0.1168 0.9167
0.1461 20.0 70 0.1106 0.9167
0.1461 20.57 72 0.1101 0.9167

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3