|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- dataset/riksdagen |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-tiny-sv |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: dataset/riksdagen audiofolder |
|
type: dataset/riksdagen |
|
config: audiofolder |
|
split: train |
|
args: audiofolder |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.3700987201570632 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny-sv |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the dataset/riksdagen audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6435 |
|
- Wer: 0.3701 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 5000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 1.0032 | 0.08 | 250 | 1.0075 | 0.5063 | |
|
| 0.8983 | 0.17 | 500 | 0.8945 | 0.4649 | |
|
| 0.8227 | 0.25 | 750 | 0.8336 | 0.4491 | |
|
| 0.777 | 0.33 | 1000 | 0.7931 | 0.4314 | |
|
| 0.7728 | 0.42 | 1250 | 0.7640 | 0.4217 | |
|
| 0.7141 | 0.5 | 1500 | 0.7407 | 0.4134 | |
|
| 0.7208 | 0.58 | 1750 | 0.7225 | 0.4023 | |
|
| 0.6911 | 0.66 | 2000 | 0.7083 | 0.3942 | |
|
| 0.6924 | 0.75 | 2250 | 0.6948 | 0.3911 | |
|
| 0.6702 | 0.83 | 2500 | 0.6849 | 0.3884 | |
|
| 0.663 | 0.91 | 2750 | 0.6766 | 0.3769 | |
|
| 0.6548 | 1.0 | 3000 | 0.6686 | 0.3759 | |
|
| 0.638 | 1.08 | 3250 | 0.6627 | 0.3728 | |
|
| 0.6222 | 1.16 | 3500 | 0.6574 | 0.3733 | |
|
| 0.6323 | 1.25 | 3750 | 0.6528 | 0.3691 | |
|
| 0.6192 | 1.33 | 4000 | 0.6498 | 0.3688 | |
|
| 0.633 | 1.41 | 4250 | 0.6469 | 0.3677 | |
|
| 0.6229 | 1.5 | 4500 | 0.6451 | 0.3681 | |
|
| 0.6246 | 1.58 | 4750 | 0.6439 | 0.3706 | |
|
| 0.6214 | 1.66 | 5000 | 0.6435 | 0.3701 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.12.0a0+8a1a93a |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|