marma commited on
Commit
a748204
·
1 Parent(s): d5f4d74

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -95
README.md CHANGED
@@ -26,98 +26,4 @@ model-index:
26
 
27
  # Wav2Vec2-Large-XLSR-53-Swedish
28
 
29
- Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice)
30
- When using this model, make sure that your speech input is sampled at 16kHz.
31
-
32
- ## Usage
33
-
34
- The model can be used directly (without a language model) as follows:
35
-
36
- ```python
37
- import torch
38
- import torchaudio
39
- from datasets import load_dataset
40
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
41
-
42
- test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
43
-
44
- processor = Wav2Vec2Processor.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
45
- model = Wav2Vec2ForCTC.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
46
-
47
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
48
-
49
- # Preprocessing the datasets.
50
- # We need to read the aduio files as arrays
51
- def speech_file_to_array_fn(batch):
52
- speech_array, sampling_rate = torchaudio.load(batch["path"])
53
- batch["speech"] = resampler(speech_array).squeeze().numpy()
54
- return batch
55
-
56
- test_dataset = test_dataset.map(speech_file_to_array_fn)
57
- inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
-
59
- with torch.no_grad():
60
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
-
62
- predicted_ids = torch.argmax(logits, dim=-1)
63
-
64
- print("Prediction:", processor.batch_decode(predicted_ids))
65
- print("Reference:", test_dataset["sentence"][:2])
66
- ```
67
-
68
-
69
- ## Evaluation
70
-
71
- The model can be evaluated as follows on the Swedish test data of Common Voice.
72
-
73
-
74
- ```python
75
- import torch
76
- import torchaudio
77
- from datasets import load_dataset, load_metric
78
- from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
79
- import re
80
-
81
- test_dataset = load_dataset("common_voice", "sv-SE", split="test")
82
- wer = load_metric("wer")
83
-
84
- processor = Wav2Vec2Processor.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
85
- model = Wav2Vec2ForCTC.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
86
- model.to("cuda")
87
-
88
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
89
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
-
91
- # Preprocessing the datasets.
92
- # We need to read the aduio files as arrays
93
- def speech_file_to_array_fn(batch):
94
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
- speech_array, sampling_rate = torchaudio.load(batch["path"])
96
- batch["speech"] = resampler(speech_array).squeeze().numpy()
97
- return batch
98
-
99
- test_dataset = test_dataset.map(speech_file_to_array_fn)
100
-
101
- # Preprocessing the datasets.
102
- # We need to read the aduio files as arrays
103
- def evaluate(batch):
104
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
-
106
- with torch.no_grad():
107
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
-
109
- pred_ids = torch.argmax(logits, dim=-1)
110
- batch["pred_strings"] = processor.batch_decode(pred_ids)
111
- return batch
112
-
113
- result = test_dataset.map(evaluate, batched=True, batch_size=8)
114
-
115
- print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
116
- ```
117
-
118
- **Test Result**: 23.33 %
119
-
120
-
121
- ## Training
122
-
123
- The [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/) was used for training.
 
26
 
27
  # Wav2Vec2-Large-XLSR-53-Swedish
28
 
29
+ This model has moved [here](https://huggingface.co/KBLab/wav2vec2-large-xlsr-53-swedish)