patrickvonplaten commited on
Commit
d5f4d74
·
1 Parent(s): 0d3e34b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -27
README.md CHANGED
@@ -1,45 +1,123 @@
1
  ---
2
  language: sv
 
 
3
  tags:
4
- - speech
5
  - audio
6
  - automatic-speech-recognition
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
- ## Wav2Vec 2.0 XLSR Swedish
9
 
10
- Swedish version of Wav2Vec2.0 XLSR finetuned on NST Swedish Dictation and evaluated using Common Voice
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- **WER**: 23.3%
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- Does not work in the browser for some reason, but can be used as follows (code somewhat copied from Huggingface):
15
 
16
  ```python
17
- #!/usr/bin/env python3
18
-
19
- from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
20
- import soundfile as sf
21
- from sys import argv,exit
22
  import torch
23
- import transformers
24
- from os.path import basename
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- if __name__ == '__main__':
27
- if len(argv) < 3:
28
- print(f'usage: {argv[0]} <model> <file 1>')
29
- exit(1)
30
 
31
- device = "cpu"
 
32
 
33
- processor = Wav2Vec2Processor.from_pretrained(argv[1])
34
- model = Wav2Vec2ForCTC.from_pretrained(argv[1]).to(device)
35
 
36
- f = argv[2]
37
- s,sample_rate = sf.read(f)
38
- input_values = processor(s, return_tensors="pt").to(device).input_values
39
- logits = model(input_values).logits
40
- predicted_ids = torch.argmax(logits, dim=-1)
41
 
42
- transcription = processor.decode(predicted_ids[0])
43
 
44
- print(transcription)
45
- ```
 
1
  ---
2
  language: sv
3
+ datasets:
4
+ - common_voice
5
  tags:
 
6
  - audio
7
  - automatic-speech-recognition
8
+ - speech
9
+ - xlsr-fine-tuning-week
10
+ license: apache-2.0
11
+ model-index:
12
+ - name: XLSR Wav2Vec2 Swedish by Marma
13
+ results:
14
+ - task:
15
+ name: Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Common Voice sv-SE
19
+ type: common_voice
20
+ args: sv
21
+ metrics:
22
+ - name: Test WER
23
+ type: wer
24
+ value: 23.33
25
  ---
 
26
 
27
+ # Wav2Vec2-Large-XLSR-53-Swedish
28
+
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice)
30
+ When using this model, make sure that your speech input is sampled at 16kHz.
31
+
32
+ ## Usage
33
+
34
+ The model can be used directly (without a language model) as follows:
35
+
36
+ ```python
37
+ import torch
38
+ import torchaudio
39
+ from datasets import load_dataset
40
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
41
+
42
+ test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
43
+
44
+ processor = Wav2Vec2Processor.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
45
+ model = Wav2Vec2ForCTC.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
46
+
47
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
48
+
49
+ # Preprocessing the datasets.
50
+ # We need to read the aduio files as arrays
51
+ def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
54
+ return batch
55
+
56
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
57
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
+ with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
+
62
+ predicted_ids = torch.argmax(logits, dim=-1)
63
+
64
+ print("Prediction:", processor.batch_decode(predicted_ids))
65
+ print("Reference:", test_dataset["sentence"][:2])
66
+ ```
67
+
68
+
69
+ ## Evaluation
70
+
71
+ The model can be evaluated as follows on the Swedish test data of Common Voice.
72
 
 
73
 
74
  ```python
 
 
 
 
 
75
  import torch
76
+ import torchaudio
77
+ from datasets import load_dataset, load_metric
78
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
79
+ import re
80
+
81
+ test_dataset = load_dataset("common_voice", "sv-SE", split="test")
82
+ wer = load_metric("wer")
83
+
84
+ processor = Wav2Vec2Processor.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
85
+ model = Wav2Vec2ForCTC.from_pretrained("marma/wav2vec2-large-xlsr-swedish")
86
+ model.to("cuda")
87
+
88
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
89
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
+
91
+ # Preprocessing the datasets.
92
+ # We need to read the aduio files as arrays
93
+ def speech_file_to_array_fn(batch):
94
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
96
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
97
+ return batch
98
+
99
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
100
+
101
+ # Preprocessing the datasets.
102
+ # We need to read the aduio files as arrays
103
+ def evaluate(batch):
104
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
+
106
+ with torch.no_grad():
107
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
+
109
+ pred_ids = torch.argmax(logits, dim=-1)
110
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
111
+ return batch
112
 
113
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
 
 
 
114
 
115
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
116
+ ```
117
 
118
+ **Test Result**: 23.33 %
 
119
 
 
 
 
 
 
120
 
121
+ ## Training
122
 
123
+ The [NST Swedish Dictation](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-17/) was used for training.