Edit model card

distilgpt2-finetuned

This model is a fine-tuned version of distilbert/distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7322
  • Bleu: 0.0145
  • Bertscore Precision: 0.1505
  • Bertscore Recall: 0.1674
  • Bertscore F1: 0.1581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Bertscore Precision Bertscore Recall Bertscore F1
5.0087 1.0 3223 3.9456 0.0088 0.1478 0.1638 0.1551
4.8889 2.0 6446 3.7706 0.0093 0.1480 0.1642 0.1554
4.9152 3.0 9669 3.6252 0.0097 0.1483 0.1646 0.1557
4.647 4.0 12892 3.5105 0.0103 0.1486 0.1649 0.1560
4.4683 5.0 16115 3.4093 0.0108 0.1489 0.1652 0.1563
4.4007 6.0 19338 3.3225 0.0110 0.1491 0.1654 0.1565
4.3966 7.0 22561 3.2444 0.0115 0.1493 0.1656 0.1567
4.3414 8.0 25784 3.1662 0.0117 0.1494 0.1657 0.1568
4.2446 9.0 29007 3.1021 0.0122 0.1497 0.1660 0.1571
4.2464 10.0 32230 3.0384 0.0125 0.1499 0.1662 0.1573
4.1739 11.0 35453 2.9789 0.0128 0.1499 0.1665 0.1574
4.08 12.0 38676 2.9295 0.0131 0.1501 0.1666 0.1576
4.001 13.0 41899 2.8857 0.0135 0.1502 0.1668 0.1577
3.9277 14.0 45122 2.8464 0.0136 0.1502 0.1669 0.1578
3.9709 15.0 48345 2.8137 0.0139 0.1503 0.1670 0.1578
3.9192 16.0 51568 2.7872 0.0141 0.1503 0.1672 0.1579
3.8916 17.0 54791 2.7644 0.0143 0.1504 0.1673 0.1580
3.8489 18.0 58014 2.7475 0.0144 0.1505 0.1674 0.1581
3.9091 19.0 61237 2.7364 0.0145 0.1505 0.1674 0.1581
3.9271 20.0 64460 2.7322 0.0145 0.1505 0.1674 0.1581

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
81.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mNLP-project/distilgpt2-finetuned

Finetuned
(550)
this model
Finetunes
1 model