med_ner_3

This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0
  • Age F1: 1.0
  • Yob F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 250

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Age F1 Yob F1
0.0581 18.18 1000 0.0015 1.0 1.0 1.0 1.0 1.0 1.0
0.0017 36.36 2000 0.0004 1.0 1.0 1.0 1.0 1.0 1.0
0.0006 54.55 3000 0.0002 1.0 1.0 1.0 1.0 1.0 1.0
0.0005 72.73 4000 0.0001 1.0 1.0 1.0 1.0 1.0 1.0
0.0002 90.91 5000 0.0001 1.0 1.0 1.0 1.0 1.0 1.0
0.0001 109.09 6000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0001 127.27 7000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0001 145.45 8000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0 163.64 9000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0001 181.82 10000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0 200.0 11000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0 218.18 12000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0
0.0 236.36 13000 0.0000 1.0 1.0 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
17
Safetensors
Model size
4.37M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for m-aliabbas1/med_ner_3

Finetuned
(57)
this model