|
--- |
|
language: en |
|
tags: |
|
- deberta |
|
- fill-mask |
|
thumbnail: https://huggingface.co./front/thumbnails/microsoft.png |
|
license: mit |
|
--- |
|
|
|
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention |
|
|
|
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. |
|
|
|
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. |
|
|
|
This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. |
|
|
|
|
|
### Fine-tuning on NLU tasks |
|
|
|
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. |
|
|
|
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |
|
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| |
|
| | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | |
|
| BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | |
|
| RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | |
|
| XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | |
|
| [DeBERTa-Large](https://huggingface.co./microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | |
|
| [DeBERTa-XLarge](https://huggingface.co./microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| |
|
| [DeBERTa-V2-XLarge](https://huggingface.co./microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |
|
|**[DeBERTa-V2-XXLarge](https://huggingface.co./microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | |
|
-------- |
|
#### Notes. |
|
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co./microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co./microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co./microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co./microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. |
|
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co./transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. |
|
|
|
Run with `Deepspeed`, |
|
|
|
```bash |
|
pip install datasets |
|
pip install deepspeed |
|
|
|
# Download the deepspeed config file |
|
wget https://huggingface.co./microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json |
|
|
|
export TASK_NAME=mnli |
|
output_dir="ds_results" |
|
num_gpus=8 |
|
batch_size=8 |
|
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ |
|
run_glue.py \\ |
|
--model_name_or_path microsoft/deberta-v2-xxlarge \\ |
|
--task_name $TASK_NAME \\ |
|
--do_train \\ |
|
--do_eval \\ |
|
--max_seq_length 256 \\ |
|
--per_device_train_batch_size ${batch_size} \\ |
|
--learning_rate 3e-6 \\ |
|
--num_train_epochs 3 \\ |
|
--output_dir $output_dir \\ |
|
--overwrite_output_dir \\ |
|
--logging_steps 10 \\ |
|
--logging_dir $output_dir \\ |
|
--deepspeed ds_config.json |
|
``` |
|
|
|
You can also run with `--sharded_ddp` |
|
```bash |
|
cd transformers/examples/text-classification/ |
|
export TASK_NAME=mnli |
|
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ |
|
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ |
|
--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 |
|
``` |
|
|
|
|
|
### Citation |
|
|
|
If you find DeBERTa useful for your work, please cite the following paper: |
|
|
|
``` latex |
|
@inproceedings{ |
|
he2021deberta, |
|
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, |
|
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, |
|
booktitle={International Conference on Learning Representations}, |
|
year={2021}, |
|
url={https://openreview.net/forum?id=XPZIaotutsD} |
|
} |
|
``` |
|
|