Model Repository Documentation
Repository Structure Overview
The repository is organized into eight main directories, each serving a specific purpose in the pipeline:
Meta Data (1_meta_data)
Contains AMASS dataset metadata specifically focused on copycat and occlusion information, essential for motion capture applications.
MediaPipe Models (2_mediapipe_ckpts)
Houses MediaPipe's specialized models for facial landmarks and hand tracking, providing fundamental capabilities for human pose estimation.
4DHumans Framework (3_4DHumans)
Incorporates the SMPL (Skinned Multi-Person Linear Model) framework along with training artifacts. The directory includes model parameters, joint regressors, and HMR2 (Human Mesh Recovery) training checkpoints with corresponding configuration files.
SMPLhub (4_SMPLhub)
Serves as a comprehensive collection of human body models, including:
- MANO (hand model) parameters for both left and right hands
- SMPL models in various formats (NPZ and PKL) for male, female, and neutral body types
- SMPLH (SMPL with detailed hand articulation)
- SMPLX (extended SMPL model with face and hand expressions)
Additional Components
- S3FD (5_S3FD): Contains face detection model weights
- SyncNet (6_SyncNet): Includes audio-visual synchronization model
- SGHM (7_SGHM): Houses ResNet50-based model weights
- KonIQ (8_koniq): Contains pre-trained weights for image quality assessment
βββ 1_meta_data
β βββ amass_copycat_occlusion_v3.pkl
βββ 2_mediapipe_ckpts
β βββ face_landmarker.task
β βββ hand_landmarker.task
βββ 3_4DHumans
β βββ data
β β βββ smpl
β β β βββ SMPL_NEUTRAL.pkl
β β βββ smpl_mean_params.npz
β β βββ SMPL_to_J19.pkl
β βββ logs
β βββ train
β βββ multiruns
β βββ hmr2
β βββ 0
β βββ checkpoints
β β βββ epoch=35-step=1000000.ckpt
β βββ dataset_config.yaml
β βββ model_config.yaml
βββ 4_SMPLhub
β βββ 0_misc_files
β β βββ J_regressor_coco.npy
β βββ MANO
β β βββ pkl
β β βββ MANO_LEFT.pkl
β β βββ mano_mean_params.npz
β β βββ MANO_RIGHT.pkl
β βββ SMPL
β β βββ basicmodel_X_lbs_10_207_0_v1.1.0_pkl
β β β βββ basicmodel_f_lbs_10_207_0_v1.1.0.pkl
β β β βββ basicmodel_m_lbs_10_207_0_v1.1.0.pkl
β β β βββ basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl
β β βββ X_model_npz
β β β βββ SMPL_F_model.npz
β β β βββ SMPL_M_model.npz
β β β βββ SMPL_N_model.npz
β β βββ X_pkl
β β βββ SMPL_FEMALE.pkl
β β βββ SMPL_MALE.pkl
β β βββ SMPL_NEUTRAL.pkl
β βββ SMPLH
β β βββ X_npz
β β β βββ SMPLH_FEMALE.npz
β β β βββ SMPLH_MALE.npz
β β β βββ SMPLH_NEUTRAL.npz
β β βββ X_pkl
β β βββ SMPLH_female.pkl
β β βββ SMPLH_male.pkl
β β βββ SMPLH_NEUTRAL.pkl
β βββ SMPLX
β βββ mod
β β βββ SMPLX_MALE_shape2019_exp2020.npz
β βββ X_npz
β βββ SMPLX_FEMALE.npz
β βββ SMPLX_MALE.npz
β βββ SMPLX_NEUTRAL.npz
βββ 5_S3FD
β βββ sfd_face.pth
βββ 6_SyncNet
β βββ syncnet_v2.model
βββ 7_SGHM
β βββ SGHM-ResNet50.pth
βββ 8_koniq
βββ koniq_pretrained.pkl
Create New Model Repo
Update LFS files
git lfs track "*.gif"
git lfs track "*.jpg"
git lfs track "*.png"
# 4. δ½Ώη¨ git lfs migrate ε½δ»€θ½¬ζ’η°ζζδ»Ά
# θΏδΌε°ε·²η»ζδΊ€ηζ仢转ζ’δΈΊ LFS 对豑
git lfs migrate import --include="*.gif,*.jpg,*.png" --everything
# 5. εΌΊεΆζ¨ιζ΄ζ°εηεε²
git push --force origin main
Add new repo
git add .
git commit -m "init"
git push