Memgpt-3x7b-MOE
Memgpt-3x7b-MOE is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
𧩠Configuration
base_model: liminerity/Memgpt-slerp-7b-5
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: starsnatched/MemGPT-DPO
positive_prompts:
- "versatile"
- "helpful"
- "factual"
- "integrated"
- "adaptive"
- "comprehensive"
- "balanced"
negative_prompts:
- "specialized"
- "narrow"
- "focused"
- "limited"
- "specific"
- source_model: starsnatched/MemGPT-3
positive_prompts:
- "analytical"
- "accurate"
- "logical"
- "knowledgeable"
- "precise"
- "calculate"
- "compute"
- "solve"
- "work"
- "python"
- "javascript"
- "programming"
- "algorithm"
- "tell me"
- "assistant"
negative_prompts:
- "creative"
- "abstract"
- "imaginative"
- "artistic"
- "emotional"
- "mistake"
- "inaccurate"
- source_model: starsnatched/MemGPT
positive_prompts:
- "instructive"
- "clear"
- "directive"
- "helpful"
- "informative"
negative_prompts:
- "exploratory"
- "open-ended"
- "narrative"
- "speculative"
- "artistic"
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "liminerity/Memgpt-3x7b-MOE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for liminerity/Memgpt-3x7b-MOE
Merge model
this model