YAML Metadata
Error:
"language" with value "noinfo" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
ESPnet2 ENH model
lichenda/chime4_fasnet_dprnn_tac
This model was trained by LiChenda using chime4 recipe in espnet.
Demo: How to use in ESPnet2
cd espnet
git checkout 98f5fb2185b98f9c08fd56492b3d3234504561e7
pip install -e .
cd egs2/chime4/enh1
./run.sh --skip_data_prep false --skip_train true --download_model lichenda/chime4_fasnet_dprnn_tac
RESULTS
Environments
- date:
Sat Mar 19 07:17:45 CST 2022
- python version:
3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]
- espnet version:
espnet 0.10.7a1
- pytorch version:
pytorch 1.8.1
- Git hash:
648b024d8fb262eb9923c06a698b9c6df5b16e51
- Commit date:
Wed Mar 16 18:47:21 2022 +0800
- Commit date:
..
config: conf/tuning/train_enh_dprnntac_fasnet.yaml
dataset | STOI | SAR | SDR | SIR |
---|---|---|---|---|
enhanced_dt05_simu_isolated_6ch_track | 0.95 | 15.75 | 15.75 | 0.00 |
enhanced_et05_simu_isolated_6ch_track | 0.94 | 15.40 | 15.40 | 0.00 |
ENH config
expand
config: conf/tuning/train_enh_dprnntac_fasnet.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: chunk
output_dir: exp/enh_train_enh_dprnntac_fasnet_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: 10
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- si_snr
- max
- - valid
- loss
- min
keep_nbest_models: 1
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 8
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/enh_stats_16k/train/speech_mix_shape
- exp/enh_stats_16k/train/speech_ref1_shape
valid_shape_file:
- exp/enh_stats_16k/valid/speech_mix_shape
- exp/enh_stats_16k/valid/speech_ref1_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 32000
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/tr05_simu_isolated_6ch_track/wav.scp
- speech_mix
- sound
- - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp
- speech_ref1
- sound
valid_data_path_and_name_and_type:
- - dump/raw/dt05_simu_isolated_6ch_track/wav.scp
- speech_mix
- sound
- - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp
- speech_ref1
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-08
weight_decay: 0
scheduler: steplr
scheduler_conf:
step_size: 2
gamma: 0.98
init: xavier_uniform
model_conf:
stft_consistency: false
loss_type: mask_mse
mask_type: null
criterions:
- name: si_snr
conf:
eps: 1.0e-07
wrapper: fixed_order
wrapper_conf:
weight: 1.0
use_preprocessor: false
encoder: same
encoder_conf: {}
separator: fasnet
separator_conf:
enc_dim: 64
feature_dim: 64
hidden_dim: 128
layer: 6
segment_size: 24
num_spk: 1
win_len: 16
context_len: 16
sr: 16000
fasnet_type: fasnet
dropout: 0.2
decoder: same
decoder_conf: {}
required:
- output_dir
version: 0.10.7a1
distributed: false
Citing ESPnet
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{ESPnet-SE,
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
pages = {785--792},
publisher = {{IEEE}},
year = {2021},
url = {https://doi.org/10.1109/SLT48900.2021.9383615},
doi = {10.1109/SLT48900.2021.9383615},
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference API (serverless) does not yet support espnet models for this pipeline type.